Skip to main content
Log in

Advances in upper limb stroke rehabilitation: a technology push

  • Special Issue - Review
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Strokes affect thousands of people worldwide leaving sufferers with severe disabilities affecting their daily activities. In recent years, new rehabilitation techniques have emerged such as constraint-induced therapy, biofeedback therapy and robot-aided therapy. In particular, robotic techniques allow precise recording of movements and application of forces to the affected limb, making it a valuable tool for motor rehabilitation. In addition, robot-aided therapy can utilise visual cues conveyed on a computer screen to convert repetitive movement practice into an engaging task such as a game. Visual cues can also be used to control the information sent to the patient about exercise performance and to potentially address psychosomatic variables influencing therapy. This paper overviews the current state-of-the-art on upper limb robot-mediated therapy with a focal point on the technical requirements of robotic therapy devices leading to the development of upper limb rehabilitation techniques that facilitate reach-to-touch, fine motor control, whole-arm movements and promote rehabilitation beyond hospital stay. The reviewed literature suggest that while there is evidence supporting the use of this technology to reduce functional impairment, besides the technological push, the challenge ahead lies on provision of effective assessment of outcome and modalities that have a stronger impact transferring functional gains into functional independence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://www.hocoma.com.

  2. http://interactive-motion.com.

  3. http://www.myomo.com.

  4. http://www.hometelemed.com.

References

  1. Adamnovich SV, Fluet GG, Mathai A et al (2009) Design of a complex virtual reality simulation to train finger motion for persons with hemiparesis: a feasibility study. J Neuroeng Rehabil 6:28. doi:10.1186/1743-0003-6-28

    Article  Google Scholar 

  2. Aisen ML, Krebs HI, Hogan N, McDowell F, Volpe BT (1997) The effect of robot-assisted therapy and rehabilitative training on motor recovery following a stroke. Arch Neurol 54:443–446

    PubMed  CAS  Google Scholar 

  3. Amirabdollahian F, Loureiro R, Harwin W (2002) Minimum jerk trajectory control for rehabilitation and haptic applications. In: Proceedings of IEEE international conference on robotics and automation (ICRA 2002), May 2002, Washington DC, USA, IEEE, pp 3380–3385

  4. Amirabdollahian F, Gradwell E, Loureiro R, Collin C, Harwin W (2003) Effects of the gentle/s robot mediated therapy on the outcome of upper limb rehabilitation post-stroke: analysis of the battle hospital data. In: Proceedings of 8th international conference on rehabilitation robotics (ICORR 2003), KAIST, Republic of Korea, pp 55–58

  5. Amirabdollahian F, Harwin WS, Loureiro RCV (2007b). Analysis of the fugl-meyer outcome measures assessing the effectiveness of robot-mediated stroke therapy. In: Proceedings of IEEE 10th international conference on rehabilitation robotics (ICORR 2007), 12–14 June, Noordwijk, The Netherlands, pp 729–735

  6. Amirabdollahian F, Loureiro RCV, Collin C, Harwin WS, Johnson G (2007) Analysis of the fugl-meyer measures assessing the effectiveness of the GENTLE/s rehabilitation robotics system delivering upper limb therapies. In special issue on rehabilitation robotics. J Neuroeng Rehabil 4:4

    Article  PubMed  Google Scholar 

  7. Bach-y-Rita P, Wood S, Leder R, Paredes O, Bahr D, Bach-y-Rita EW (2002) Computer assisted motivating rehabilitation for institutional, home, and educational late stroke programs. Top Stroke Rehabil 8(4):1–10

    Article  PubMed  Google Scholar 

  8. Balasubramanian S, Klein J, Burdet E (2010) Robot-assisted rehabilitation of hand function. Curr Opin Neurol 23(6):661–670

    Article  PubMed  Google Scholar 

  9. Barreca S, Wolf S, Fasoli S, Bohannon R (2003) Treatment interventions for the paretic upper limb of stroke survivors: a critical review. Neurorehabil Neural Repair 17(4):220–226

    Article  PubMed  Google Scholar 

  10. Brewer BR, Klatzky R, Matsuoka Y (2006) Initial therapeutic results of visual feedback manipulation in robotic rehabilitation. International workshop on virtual rehabilitation, pp 160–166

  11. Broeks JG, Lankhorst GJ, Rumping K, Prevo AJ (1999) The long-term outcome of arm function after stroke: results of a follow up study. Disabil Rehabil 21(8):357–364

    Article  PubMed  CAS  Google Scholar 

  12. Carignan C, Krebs HI (2006) Telerehabilitation robotics: bright lights, big future? J Rehabil Res Dev 43(5):695–710

    Article  PubMed  Google Scholar 

  13. Carignan C, Tang J, Roderick S, Naylor M (2007) A configuration-space approach to controlling a rehabilitation arm exoskeleton. In: Proceedings of the 2007 IEEE 10th international conference on rehabilitation robotics, 12–15 June, Noordwijk, The Netherlands, pp 179–187

  14. Casadio M, Sanguineti V, Morasso PG, Arrichiello V (2006) Braccio di Ferro: a new haptic workstation for neuromotor rehabilitation. Technol Health Care 14(3):123–142

    PubMed  Google Scholar 

  15. Celestino J, Krebs HI, Hogan N (2003) A robot for wrist rehabilitation: characterization and initial results. In: Proceedings of the 8th international conference on rehabilitation robotics, Daejon, South Korea

  16. Charles SK, Krebs HI, Volpe B, Lynch D, Hogan N (2005) Wrist rehabilitation following a stroke: initial clinical results. In: Proceedings of the IEEE 9th international conference on rehabilitation robotics, Chicago, IL, USA, pp 13–16

  17. Colombo R, Pisano F, Mazzone A, Delconte C, Micera S, Carrozza MC, Dario P, Minuco G (2007) Design strategies to improve patient motivation during robot-aided rehabilitation. J Neuroeng Rehabil 4:3. doi:10.1186/1743-0003-4-3

    Article  PubMed  Google Scholar 

  18. Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza MC, Dario P, Minuco G (2005) Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. In: Proceedings of IEEE 9th international conference on rehabilitation robotics, June 28–July 1, Chicago, IL, USA, pp 515–518

  19. Coote S, Stokes E, Murphy B, Harwin W (2003) The effect of GENTLE/S robot-mediated therapy on upper extremity dysfunction post stroke, In: Proceedings of 8th international conference on rehabilitation robotics (ICORR 2003), KAIST, Republic of Korea, pp 59–61

  20. Cozens JA (1999) Robotic assistance of an active upper limb exercise in neurologically impaired patients. IEEE Trans Rehabil Eng 7(2):254–256

    Article  PubMed  CAS  Google Scholar 

  21. Cramer SC (2010) Brain repair after stroke. N Engl J Med. doi:10.1056/NEJMe1003399. 16 April, pp 1–3

  22. Dijkers MP, deBear PC, Erlandson RF, Kristy K, Geer DM, Nichols A (1991) Patient and staff acceptance of robot technology in occupational therapy: a pilot study. J Rehabil Res Dev 28(2):33–44

    Article  PubMed  CAS  Google Scholar 

  23. Fasoli SE, Krebs HI, Stein J, Frontera WR, Hughes R, Hogan N (2004) Robotic therapy for chronic motor impairments after stroke: follow-up results. Arch Phys Med Rehabil 85(7):1106–1111 [PMID: 15241758]

    Article  PubMed  Google Scholar 

  24. Feng X, Winters JM (2006) Emerging personalized home rehabilitation: integrating service with interface, in medical instrumentation: accessibility and usability considerations. In: Winters JM and Story MF (eds) Chapter 27, CRC Press, Boca Raton, FL, pp 355–372

  25. Feng X, Winters JM (2007) An interactive framework for personalized computer-assisted neurorehabilitation. IEEE Trans Inf Technol Biomed 518–526

  26. Feng X, Ellsworth C, Johnson L, Winters JM (2004) UniTherapy: software design and hardware tools of teletherapy. RESNA, Orlando

    Google Scholar 

  27. Ferraro M, Palazzolo JJ, Krol J, Krebs HI, Hogan N, Volpe BT (2003) Robot-aided sensorimotor arm training improves outcome in patients with chronic stroke. Neurology 61:1604–1607

    PubMed  CAS  Google Scholar 

  28. Finley MA, Fasoli SE, Dipietro L, Ohlhoff J, MacClellan L, Meister C, Whitall J, Macko R, Bever CT, Krebs HI, Hogan N (2005) Short-duration robotic therapy in stroke patients with severe upper-limb motor impairment. J Rehabil Res Dev 42(5):683–691

    Article  PubMed  Google Scholar 

  29. Fisher BE, Sullivan KJ (2001) Activity-dependent factors affecting poststroke functional outcomes. Top Stroke Rehabil 8(3):31–44

    Article  PubMed  CAS  Google Scholar 

  30. Galvin R, Murphy B, Cusack T, Stokes E (2008) The impact of increased duration of exercise therapy on functional recovery following stroke—what is the evidence? Top Stroke Rehabil 15(4):365–377

    Article  PubMed  Google Scholar 

  31. Gockley R, Mataric MJ (2006) Encouraging physical therapy compliance with a hands-off mobile robot. HRI 150–155

  32. Gresham GE, Duncan PW, Stason WB, Adams HP, Adelman AM, Alexander DN, Bishop DS, Diller L, Donaldson NE, Granger CV, Holland AL, Kelly-Hayes M, McDowell FH, Myers L, Phipps MA, Roth EJ, Siebens HC, Tarvin GA, Trombly CA (1995) Post-stroke rehabilitation. Clinical practice guideline. US Department of Health and Human Services, Public Health Service, Agency for Health Care Policy and Research

  33. Gritsenko V, Prochazka A (2004) A functional electric stimulation-assisted exercise therapy system for hemiplegic hand function. Arch Phys Med Rehabil 85:881–885

    Article  PubMed  Google Scholar 

  34. Harwin W, Loureiro R, Amirabdollahian F, Taylor M, Johnson G, Stokes E, Coote S, Topping M, Collin C, Tamparis S, Kontoulis J, Munih M, Hawkins P, Driessen B (2001) The GENTLES/S project: a new method of delivering neuro-rehabilitation. In: Marincek Crt, Buhler C, Knops H, Andrich R (eds) proceedings association for the advancement of assistive technology in Europe (AAATE 2001), Assistive technology—added value to the quality of life, assistive technology research series, vol 10. IOS Press, pp 36–41

  35. Harwin WS, Patton JL, Edgerton VR (2006) Challenges and opportunities for robot-mediated neurorehabilitation. Proc IEEE 94(9):1717–1726

    Article  Google Scholar 

  36. He J, Koeneman EJ, Schultz RS, Huang H, Wanberg J, Herring DE, Sugar T, Herman R, Koeneman JB (2005) Design of a robotic upper extremity repetitive therapy device. In: Proceedings of the 9th IEEE international conference on rehabilitation robotics, June 28–July 1, Chicago, USA, pp 95–98

  37. Hesse S, Schmidt H, Werner C (2006) Machines to support motor rehabilitation after stroke: 10 years of experience in Berlin. J Rehabil Res Dev 43(5):671–678

    Article  PubMed  Google Scholar 

  38. Hesse S, Schulte-Tigges G, Konrad M, Bardeleben A, Werner C (2003) Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil 84(6):915–920

    Article  PubMed  Google Scholar 

  39. Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML (2005) Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke 36(9):1960–1966

    Article  PubMed  CAS  Google Scholar 

  40. Hogan N, Krebs HI, Charnnarong J, Srikrishna P, Sharon A (1992) MIT-MANUS: a workstation for manual therapy and training. IEEE international workshop on robot and human communication, pp 161–165

  41. Housman SJ, Le V, Rahman T, Sanchez RJ, Reinkensmeyer DJ (2007) Arm-training with T-WREX after chronic stroke: preliminary results of a randomized controlled trial. In: Proceedings of the 2007 IEEE 10th international conference on rehabilitation robotics, 12–15 June, Noordwijk, The Netherlands, pp 562–568

  42. Ikegami Y, Nagai K, Loureiro RCV, Harwin WS (2009) “Design of redundant drive joint with adjustable stiffness and damping mechanism to improve joint admittance”. In: Proceedings of international conference on rehabilitation robotics 2009 (ICORR 2009), pp 202–210

  43. Jackson AE, Holt RJ, Culmer PR, Makower SG, Levesley MC, Richardson RC, Cozens JA, Williams MM, Bhakta BB (2007) Dual robot system for upper limb rehabilitation after stroke: the design process. Proc IMechE Part C: J. Mech Eng Sci 1–13

  44. Johnson MJ, Van der Loos HFM, Burgar CG, Shor P, Leifer LJ (2001) Designing a robotic therapy device to motivate use of the impaired limb. In: Mounir Mokhtari (ed) Integration of assistive technology in the information age, vol 9. IOS Press, pp 123–132

  45. Johnson MJ, Wisneski HJ, Anderson J, Nathan D, Smith R (2006) Development of ADLER: the activities of the daily living exercise robot. IEEE-EMBS Biomedical Robotics (BioRob 2006), February 2006. Pisa, Italy, pp 881–886

    Google Scholar 

  46. Johnson MJ, Feng X, Johnson LM, Winters J (2007) Potential of a suite of robot/computer-assisted motivating systems for personalized, home-based, stroke rehabilitation. Neuroeng Rehabil 4:6

    Article  Google Scholar 

  47. Johnson MJ, Van der Loos HFM, Burgar CG, Leifer LJ (1999) Driver’s SEAT: simulation environment for arm therapy. In: International conference on rehabilitation robotics (ICORR 1999), Stanford, CA, USA, pp 227–234

  48. Johnson MJ, Shakya Y, Strachota E, Ahamed SI (2011) Low-cost monitoring of patients during unsupervised robot/computer assisted motivating stroke rehabilitation. Biomed Tech 56:5–9. doi:10.1515/BMT.2010.050

    Article  Google Scholar 

  49. Jovanov E, Milenkovic A, Otto C, Groen PC (2005) A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. J Neuroeng Rehabil 2:6

    Article  PubMed  Google Scholar 

  50. Kahn LE, Zygman ML, Rymer WZ, Reinkensmeyer DJ (2001) Effect of robot-assisted reaching and unassisted exercise on functional reaching in chronic hemiparesis. In: Proceedings of the 23rd annual international conference of the IEEE engineering in medicine and biology society, Instanbul, Turkey, pp 1344–1347

  51. Kim YS, Lee J, Lee S, Kim M (2005) A force reflected exoskeleton-type masterarm for human–robot interaction. IEEE Trans Syst Man Cybern A, Syst Humans 35(2):198–212

    Article  Google Scholar 

  52. Kinsman Enterprises (2007) Product catalog, pp 11. Available at: http://www.kinsmanenterprises.com/

  53. Koeneman EJ, Schultz RS, Wolf SL, Herring DE, Koeneman JB (2004) A pneumatic muscle hand therapy device. In: Proceedings of the 26th annual international conference of the IEEE EMBS, 1–5 September, San Francisco, CA, USA, pp 2711–2713

  54. Kowalczewski J, Gritsenko V, Ashworth N, Ellaway P, Prochazka A (2007) Upper-extremity functional electric stimulation-assisted exercises on a workstation in the subacute phase of stroke recovery. Arch Phys Med Rehabil 88:833–839

    Article  PubMed  Google Scholar 

  55. Krebs HI (2007) Robot-mediated movement therapy: a tool for training and evaluation. European symposium technical aids for rehabilitation, TAR 2007, 25–26 January, Berlin, Germany

  56. Krebs HI, Hogan N, Volpe BT, Aisen ML, Edelstein L, Diels C (1999) Robot-aided neuro- rehabilitation in stroke: three-year follow-up. In: International conference on rehabilitation robotics (ICORR 1999), Stanford, CA, USA, pp 34–41

  57. Lambercy O, Dovat L, Johnson V, Salman B, Wong S, Gassert R, Milner T, Leong TC, Burdet E (2007). Development of a robot-assisted rehabilitation therapy to train hand function for activities of daily living. In: Proceedings of IEEE 10th international conference on rehabilitation robotics (ICORR 2007), 12–14 June, Noordwijk, The Netherlands, pp 678–82

  58. Lo A, Guarino P et al. (2010) Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med 1–13. 16 April, doi:10.1056/nejmoa0911341

  59. Loureiro R, Amirabdollahian F, Coote S, Stokes E, Harwin W (2001a). Using haptics technology to deliver motivational therapies in stroke patients: concepts and initial pilot studies. In: Proceedings of the 1st European conference on haptics (EuroHaptics 2001), educational technology research paper series, University of Birmingham, Birmingham, UK, pp 1–6, ISSN 1463-9394

  60. Loureiro R, Amirabdollahian F, Driessen B, Harwin W (2001). A novel method for computing natural path for robot assisted movements in synthetic worlds. In: Marincek Crt, Buhler C, Knops H, Andrich R (eds) proceedings association for the advancement of assistive technology in Europe (AAATE 2001), Assistive technology—added value to the quality of life, Assistive technology research series, vol 10. IOS Press, pp 262–267

  61. Loureiro R, Amirabdollahian F, Topping M, Driessen B, Harwin W (2003) Upper limb mediated stroke therapy—GENTLE/s approach. In special issue on rehabilitation robotics, J Autono Robots, Springer, 15(1):35–51, ISSN: 0929-5593

  62. Loureiro RCV, Harwin WS, Collin CF, Johnson M (2005) Technology driven therapy for stroke rehabilitation: beyond hospital treatment. Int J Dis Human Dev 4(3):169–175

    Article  Google Scholar 

  63. Loureiro RCV, Harwin WS (2007) Reach and grasp therapy: design and control of a 9-DOF robotic neuro-rehabilitation system. In: Proceedings of the IEEE 10th international conference on rehabilitation robotics, 12–15 June, Noordwijk, The Netherlands, pp 757–762

  64. Loureiro RCV, Johnson M, Harwin WS (2006) Collaborative tele-rehabilitation: a strategy for increasing engagement. In: Proceedings of the first IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics. 20–22 February, Pisa, Italy

  65. Loureiro RCV, Lamperd B, Collin C, Harwin WS (2009) Reach and grasp therapy: effects of the Gentle/G system assessing sub-acute stroke whole-arm rehabilitation. In: Proceedings of IEEE 11th international conference on rehabilitation robotics (ICORR 2009), 23–26 June, Kyoto, Japan, pp 755–760

  66. Lum PS, Burgar CG, Kenney DE, Van der Loos MHF (2002) Quantification of force abnormalities during passive and active-assisted upper-limb reaching movements in post-stroke hemiparesis. IEEE Trans Biomed Eng 46(6):652–662

    Article  Google Scholar 

  67. Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M (2002) Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil 83(7):952–957

    Article  PubMed  Google Scholar 

  68. Lum PS, Burgar CG, Van der Loos M, Shor PC, Majmundar M, Yap R (2006) MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: a follow-up study. J Rehabil Res Dev 43(5):631–642

    Article  PubMed  Google Scholar 

  69. Lum PS, Lehman SL, Reinkensmeyer DJ (1995) The bimanual lifting rehabilitator: an adaptive machine for therapy of stroke patients. IEEE Trans Rehab Eng 3:166–174

    Article  Google Scholar 

  70. Lum PS, Reinkensmeyer DJ, Lehman SL (1993) Robotic assist devices for bimanual physical therapy: preliminary experiments. IEEE Trans Rehab Eng 1:185–191

    Article  Google Scholar 

  71. Lum PS, Van der Loos M, Shor P, Burgar CG (1999) A robotic system for upper limb exercises to promote recovery of motor function following stroke. In: International conference on rehabilitation robotics (ICORR 1999), Stanford, CA, USA, pp 235–239

  72. Luo X, Kenyon RV, Kline T, Waldinger HC, Kamper DG (2005) An augmented reality training environment for post-stroke finger extension rehabilitation. Proceedings of the 9th IEEE international conference on rehabilitation robotics, June 28–July 1, Chicago, IL, USA, pp 329–32

  73. Maclean N, Pound P (2000) A critical review of the concept of patient motivation in the literature on physical rehabilitation. Soc Sci Med 50(4):495–506

    Article  PubMed  CAS  Google Scholar 

  74. Maclean N, Pound P, Wolfe C, Rudd A (2000) Qualitative analysis of stroke patients’ motivation for rehabilitation. Br Med J 321:1051–1054

    Article  CAS  Google Scholar 

  75. Masiero S, Celia A, Rosati G, Armani M (2007) Robotic-assisted rehabilitation of the upper limb after acute stroke. Arch Phys Med Rehabil 88:142–147

    Article  PubMed  Google Scholar 

  76. Mataric MJ, Eriksson J, Fiel-Seifer DJ, Winstein CJ (2007) Socially assistive robotics for post-stroke rehabilitation. J Neuroeng Rehabil 4:5

    Article  PubMed  Google Scholar 

  77. Merians A, Poizner H, Boian R, Burdea G, Adamovich S (2006) Sensorymotor training in a virtual environment: does it improve functional recovery post-stroke? Neurorehabil Neural Repair 20(2):252–267

    Article  PubMed  Google Scholar 

  78. Montagner A, Frisoli A, Borelli L, Procopio C, Bergamasco M, Carboncini MC, Rossi B (2007) A pilot clinical study on robotic assisted rehabilitation in VR with an arm exoskeleton.In: Proceedings of IEEE virtual rehabilitation, 27–29 September, Venice, pp 57–64

  79. Nagai K, Dake Y, Shiigi Y, Loureiro RCV, Harwin WS (2010) Design of redundant drive joints with double actuation using springs in the second actuator to avoid excessive active torques. In: Proceedings of international conference on robotics and automation 2010 (ICRA 2010), pp 805–812

  80. Nagai K, Kojima Y, Yonemoto S, Okubo T, Loureiro RCV, Harwin WS (2007) Structural design of an escort type rehabilitation robot for post-stroke therapies of upper-limb. In: Proceedings of international conference on rehabilitation robotics 2007 (ICORR 2007), pp 1121–1128

  81. Nagai K, Shiigi Y, Ikegami Y, Loureiro RCV, Harwin WS (2009). Impedance control of redundant drive joints with double actuation. In: Proceedings of international conference on robotics and automation 2009 (ICRA 2009), pp 1528–1534

  82. Nathan D, Johnson MJ (2008) Feasibility of integrating FES grasp assistance with a task-oriented robot-assisted therapy environment: a case study. In: Second annual international conference on biomedical robotics (BioRob 2008), October 2008, Scottsdale, AZ

  83. Nathan DE, Johnson MJ, McGuire JM (2009) Design and validation of a low-cost assistive glove for assessment and therapy of the hand during ADL-focused robotic stroke therapy. J Rehabil Res Dev 46(5):587–602

    Article  PubMed  Google Scholar 

  84. Nef T, Riener R (2005). ARMin—design of a novel arm rehabilitation robot. In: 9th IEEE conference on rehabilitation robotics, Chicago, USA, pp 57–60

  85. Nef T, Mihelj M, Kiefer G, Pemdl C, Muller R, Riener R (2007) ARMin—exoskeleton arm therapy in stroke patients. In: Proceedings of the 10th IEEE conference on rehabilitation robotics, Noordwijk, The Netherlands, pp 68–74

  86. Otto C, Milenkovic A, Sanders C, Jovanov E (2006) System architecture of a wireless body sensor network for ubiquitous health monitoring. J Mobile Multimed 1(4):307–326

    Google Scholar 

  87. Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA (2006) Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res 168(3):368–383

    Article  PubMed  Google Scholar 

  88. Platz T (2003) Evidence-based arm rehabilitation—a systematic review of the literature. Nervenartz 74(10):841–849

    Article  CAS  Google Scholar 

  89. Mehrholz J, Platz T, Kugler J, Pohl M (2008) Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke. Cochrane database of systematic reviews, Issue 4. Art. no.: CD006876. doi:10.1002/14651858.CD006876.pub2

  90. Popescu VG, Burdea GC, Bouzit M, Hentz VR (2000) A virtual-reality-based telerehabilitation system with force feedback. IEEE Trans Inf Technol Biomed 3(1):45–51

    Article  Google Scholar 

  91. Prange G, Jannink M, Groothuis-Oudshoorn C, Hermens H, IJzerman M (2006) Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev 43(2):171–184

    Article  PubMed  Google Scholar 

  92. Reinkensmeyer DJ, Dewald JP, Rymer WZ (1999) Guidance-based quantification of arm impairment following brain injury: a pilot study. IEEE Trans Rehabil Eng 7(1):1–11

    Article  PubMed  CAS  Google Scholar 

  93. Reinkensmeyer DJ, Kahn LE, Averbuch M, McKenna-Cole A, Schmit BD, Rymer WZ (2000) Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM guide. J Rehabil Res Dev 37:653–662

    PubMed  CAS  Google Scholar 

  94. Reinkensmeyer DJ, Pang CT, Nessler JA, Painter CC (2001) Java therapy: web-based robotic rehabilitation. In: Mounir Mokhtari (ed) Integration of assistive technology in the information age, vol 9. IOS Press, pp 66–71

  95. Reinkensmeyer DJ, Housman SJ (2007) If I can’t do it once, why do it a hundred times?: Connecting volition to movement success in a virtual environment motivates people to exercise the arm after stroke”. IEEE virtual rehabilitation, 27–29 September, Venice, Italy, pp 44–48

  96. Riener R (2007) Robot-aided rehabilitation of neural function in the upper extremities. Acta Neurochir Suppl 97(1):465–471

    PubMed  CAS  Google Scholar 

  97. Sanchez R, Reinkensmeyer D, Shah P, Liu J, Rao S, Smith R, Cramer S, Rahman T, Bobrow J (2004) Monitoring functional arm movement for home-based therapy after stroke. IEEE Eng Med Biol Soc Meeting, San Francisco, CA, September 1–5:4787–4790

    Google Scholar 

  98. Sanchez R, Wolbrecht R, Smith R, Liu J, Rao S, Cramer S, Rahman T, Bobrow J, Reinkensmeyer D (2005) A pneumatic robot for re-training arm movement after stroke: rationale and mechanical design. In: 9th IEEE conference on rehabilitation robotics, June 28–July 1, Chicago, USA, pp 500–504

  99. Seifer DF, Skinner K, Mataric MJ (2007) Benchmarks for evaluating socially assistive robotics, interaction studies: psychological benchmarks of human-robot interaction. 8:3, 423–439

  100. Shakya Y, Johnson MJ (2008) A mobile robot therapist for under-supervised training with robot/computer assisted motivating systems. IEEE EMBS international conference, pp 4511–4514

  101. Stein J, Narendran K, Mcbean J, Krebs K, Hughes R (2007) Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke. Am J Phys Med Rehabil 86:255–261

    Article  PubMed  Google Scholar 

  102. Sterr A, Freivogel S, Schmalohr D (2002) Neurobehavioral aspects of recovery: assessment of the learned non-use phenomenon in hemiparetic adolescents. Arch Phys Med Rehabil 83(12):1726–1731

    Article  PubMed  Google Scholar 

  103. Sukal TM, Ellis MD, Dewald JPA (2005). Dynamic characterization of upper limb discoordination following hemiparetic stroke. In: 9th IEEE international conference on rehabilitation robotics, Chicago, USA, pp 519–521

  104. Sveistrup H (2004). Motor rehabilitation using virtual reality. J NeuroEng Rehabil 1(10)

  105. Takahashi CD, Der-Yeghiaian L, Le VH, Cramer SC (2005) A robotic device for hand motor therapy after stroke. In: Proceedings of the 9th IEEE international conference on rehabilitation robotics, June 28–July 1, Chicago, IL, USA, pp 17–20

  106. Tapus A, Mataric MJ (2006) Towards socially assistive robotics. Int J Robotics Soc 24:5

    Google Scholar 

  107. Taub E, Wolf SL (1997) Constraint induced movement techniques to facilitate upper extremity use in stroke patients. Topics Stroke Rehabil 3:38–61

    Google Scholar 

  108. Timmermans A, Seelen H, Willmann RD, Kingma H (2009) Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. J NeuroEng Rehabil 6:1. doi:10.1186/1743-0003-6-1

    Article  PubMed  Google Scholar 

  109. Toth A, Arz G, Fazekas G, Bratanov D, Zlatov N (2004) Post stroke shoulder-elbow physiotherapy with industrial robots. In: Zenn Bien Z, Dimitar Stefanov (eds) Advances in rehabilitation robotics, human-friendly technologies on movement assistance and restoration for people with disabilities. LNCIS series, Springer Verlag, Berlin, Germany, pp 391–411, ISBN: 3-540-21986-2

  110. Van der Lee J, Snels I, Beckerman H, Lankhorst G, Wagenaar R, Bouter L (2001) Exercise therapy for arm function in stroke patients: a systematic review of randomized controlled trials. Clin Rehabil 15(1):20–31

    Article  PubMed  Google Scholar 

  111. Van der Linde RQ, Lammertse P, Frederikson E, Ruiter B (2002) The haptic master, a new high- performance haptic interface. EUROHAPTICS 2002, Edinburgh

  112. Volpe BT, Krebs HI, Hogan N, Edelstein L, Diels CM, Aisen ML (1999) Robot training enhanced motor outcome in patients with stroke maintained over 3 years. Neurology 53(8):1874–1876

    PubMed  CAS  Google Scholar 

  113. Ziherl J, Novak D, Olen!ek A, Mihelj M, Munih M (2010) Evaluation of upper extremity robot-assistances in subacute and chronic stroke subjects. J Neuroeng Rehabil 7:1–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui C. V. Loureiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loureiro, R.C.V., Harwin, W.S., Nagai, K. et al. Advances in upper limb stroke rehabilitation: a technology push. Med Biol Eng Comput 49, 1103–1118 (2011). https://doi.org/10.1007/s11517-011-0797-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-011-0797-0

Keywords

Navigation