Skip to main content
Log in

Role of calmodulin in neuronal Kv7/KCNQ potassium channels and epilepsy

  • Review
  • Published:
Frontiers in Biology

Abstract

Neuronal Kv7/KCNQ channels are critical regulators of neuronal excitability since they potently suppress repetitive firing of action potentials. These voltage-dependent potassium channels are composed mostly of Kv7.2 / KCNQ2 and Kv7.3 / KCNQ3 subunits that show overlapping distribution throughout the brain and in the peripheral nervous system. They are also called ‘M-channels’ since their inhibition by muscarinic agonists leads to a profound increase in action potential firing. Consistent with their ability to suppress seizures and attenuate chronic inflammatory and neuropathic pain, mutations in the KCNQ2 and KCNQ3 genes are associated with benign familial neonatal convulsions, a dominantly-inherited epilepsy in infancy. Recently, de novo mutations in the KCNQ2 gene have been linked to early onset epileptic encephalopathy. Notably, some of these mutations are clustered in a region of the intracellular cytoplasmic tail of Kv7.2 that interacts with a ubiquitous calcium sensor, calmodulin. In this review, we highlight the recent advances in understanding the role of calmodulin in modulating physiological function of neuronal Kv7 channels including their biophysical properties, assembly, and trafficking. We also summarize recent studies that have investigated functional impact of epilepsy-associated mutations localized to the calmodulin binding domains of Kv7.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aivar P, Fernández-Orth J, Gomis-Perez C, Alberdi A, Alaimo A, Rodríguez M S, Giraldez T, Miranda P, Areso P, Villarroel A (2012). Surface expression and subunit specific control of steady protein levels by the Kv7.2 helix A-B linker. PLoS One, 7(10): e47263

    CAS  Google Scholar 

  • Alaimo A, Alberdi A, Gomis-Perez C, Fernandez-Orth J, Gomez-Posada J C, Areso P, Villarroel A (2012). Cooperativity between calmodulin binding sites in Kv7.2 channels. J Cell Sci

    Google Scholar 

  • Alaimo A, Gómez-Posada J C, Aivar P, Etxeberría A, Rodriguez-Alfaro J A, Areso P, Villarroel A (2009). Calmodulin activation limits the rate of KCNQ2 K+ channel exit from the endoplasmic reticulum. J Biol Chem, 284(31): 20668–20675

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alfonso I, Hahn J S, Papazian O, Martinez Y L, Reyes M A, Aicardi J (1997). Bilateral tonic-clonic epileptic seizures in non-benign familial neonatal convulsions. Pediatr Neurol, 16(3): 249–251

    CAS  PubMed  Google Scholar 

  • Bal M, Zhang J, Hernandez CC, Zaika O, Shapiro MS (2010) Ca2+/calmodulin disrupts AKAP79/150 interactions with KCNQ (MType) K+ channels. The Journal of neuroscience: the official journal of the Society for Neuroscience30: 2311–2323.

    CAS  Google Scholar 

  • Blackburn-Munro G, Jensen B S (2003). The anticonvulsant retigabine attenuates nociceptive behaviours in rat models of persistent and neuropathic pain. Eur J Pharmacol, 460(2–3): 109–116

    CAS  PubMed  Google Scholar 

  • Borgatti R, Zucca C, Cavallini A, Ferrario M, Panzeri C, Castaldo P, Soldovieri M V, Baschirotto C, Bresolin N, Dalla Bernardina B, Taglialatela M, Bassi M T (2004). A novel mutation in KCNQ2 associated with BFNC, drug resistant epilepsy, and mental retardation. Neurology, 63(1): 57–65

    CAS  PubMed  Google Scholar 

  • Brown D A, Passmore G M (2009). Neural KCNQ (Kv7) channels. Br J Pharmacol, 156(8): 1185–1195

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choveau F S, Bierbower S M, Shapiro M S (2012). Pore helix-S6 interactions are critical in governing current amplitudes of KCNQ3 K+ channels. Biophys J, 102(11): 2499–2509

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chung H J, Jan Y N, Jan LY (2006). Polarized axonal surface expression of neuronal KCNQ channels is mediated by multiple signals in the KCNQ2 and KCNQ3 C-terminal domains. Proc Natl Acad Sci U S A, 103(23): 8870–8875

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clark B D, Goldberg E M, Rudy B (2009). Electrogenic tuning of the axon initial segment. Neuroscientist, 15(6): 651–668

    PubMed Central  PubMed  Google Scholar 

  • Cooper E C, Harrington E, Jan Y N, Jan LY (2001) M channel KCNQ2 subunits are localized to key sites for control of neuronal network oscillations and synchronization in mouse brain. J Neurosci, 21: 9529–9540

    CAS  PubMed  Google Scholar 

  • Coppola G, Castaldo P, Miraglia del Giudice E, Bellini G, Galasso F, Soldovieri M V, Anzalone L, Sferro C, Annunziato L, Pascotto A, Taglialatela M (2003). A novel KCNQ2 K+ channel mutation in benign neonatal convulsions and centrotemporal spikes. Neurology, 61(1): 131–134

    CAS  PubMed  Google Scholar 

  • Dahimène S, Alcoléa S, Naud P, Jourdon P, Escande D, Brasseur R, Thomas A, Baró I, Mérot J (2006). The N-terminal juxtamembranous domain of KCNQ1 is critical for channel surface expression: implications in the Romano-Ward LQT1 syndrome. Circ Res, 99(10): 1076–1083

    PubMed  Google Scholar 

  • Dailey J W, Cheong J H, Ko K H, Adams-Curtis L E, Jobe P C (1995). Anticonvulsant properties of D-20443 in genetically epilepsy-prone rats: prediction of clinical response. Neurosci Lett, 195(2): 77–80

    CAS  PubMed  Google Scholar 

  • Dedek K, Fusco L, Teloy N, Steinlein O K (2003). Neonatal convulsions and epileptic encephalopathy in an Italian family with a missense mutation in the fifth transmembrane region of KCNQ2. Epilepsy Res, 54(1): 21–27

    CAS  PubMed  Google Scholar 

  • Dedek K, Kunath B, Kananura C, Reuner U, Jentsch T J, Steinlein O K (2001). Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel. Proc Natl Acad Sci U S A, 98(21): 12272–12277

    CAS  PubMed Central  PubMed  Google Scholar 

  • Delmas P, Brown D A (2005). Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci, 6(11): 850–862

    CAS  PubMed  Google Scholar 

  • Dencker D, Dias R, Pedersen M L, Husum H (2008). Effect of the new antiepileptic drug retigabine in a rodent model of mania. Epilepsy Behav, 12(1): 49–53

    PubMed  Google Scholar 

  • Devaux J J, Kleopa K A, Cooper E C, Scherer S S (2004). KCNQ2 is a nodal K+ channel. J Neurosci, 24: 1236–1244

    CAS  PubMed  Google Scholar 

  • Etxeberria A, Aivar P, Rodriguez-Alfaro J A, Alaimo A, Villace P, Gomez-Posada J C, Areso P, Villarroel A (2008). Calmodulin regulates the trafficking of KCNQ2 potassium channels. FASEB J, 22: 1135–1143

    CAS  PubMed  Google Scholar 

  • Etxeberria A, Santana-Castro I, Regalado MP, Aivar P, Villarroel A (2004). Three mechanisms underlie KCNQ2/3 heteromeric potassium M-channel potentiation. J Neurosci, 24: 9146–9152

    CAS  PubMed  Google Scholar 

  • Etzioni A, Siloni S, Chikvashvilli D, Strulovich R, Sachyani D, Regev N, Greitzer-Antes D, Hirsch J A, Lotan I (2011). Regulation of neuronal M-channel gating in an isoform-specific manner: functional interplay between calmodulin and syntaxin 1A. J Neurosci, 31: 14158–14171

    CAS  PubMed  Google Scholar 

  • Ford C P, Stemkowski PL, Light P E, Smith PA (2003). Experiments to test the role of phosphatidylinositol 4,5-bisphosphate in neurotransmitter-induced M-channel closure in bullfrog sympathetic neurons. J Neurosci, 23: 4931–4941

    CAS  PubMed  Google Scholar 

  • Gamper N, Li Y, Shapiro M S (2005). Structural requirements for differential sensitivity of KCNQ K+ channels to modulation by Ca2+/calmodulin. Mol Biol Cell, 16(8): 3538–3551

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gamper N, Shapiro M S (2003). Calmodulin mediates Ca2+-dependent modulation of M-type K+ channels. J Gen Physiol, 122(1): 17–31

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gamper N, Shapiro M S (2007). Regulation of ion transport proteins by membrane phosphoinositides. Nat Rev Neurosci, 8(12): 921–934

    CAS  PubMed  Google Scholar 

  • Gómez-Posada J C, Aivar P, Alberdi A, Alaimo A, Etxeberría A, Fernández-Orth J, Zamalloa T, Roura-Ferrer M, Villace P, Areso P, Casis O, Villarroel A (2011). Kv7 channels can function without constitutive calmodulin tethering. PLoS One, 6(9): e25508

    PubMed Central  PubMed  Google Scholar 

  • Gu N, Vervaeke K, Hu H, Storm J F (2005). Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium afterhyperpolarization and excitability control in CA1 hippocampal pyramidal cells. J Physiol, 566(Pt 3): 689–715

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gunthorpe M J, Large C H, Sankar R (2012). The mechanism of action of retigabine (ezogabine), a first-in-class K+ channel opener for the treatment of epilepsy. Epilepsia, 53(3): 412–424

    CAS  PubMed  Google Scholar 

  • Hadley J K, Passmore GM, Tatulian L, Al-Qatari M, Ye F, Wickenden A D, Brown D A (2003) Stoichiometry of expressed KCNQ2/KCNQ3 potassium channels and subunit composition of native ganglionic M channels deduced from block by tetraethylammonium. J Neurosci, 23: 5012–5019

    CAS  PubMed  Google Scholar 

  • Haitin Y, Attali B (2008). The C-terminus of Kv7 channels: a multifunctional module. J Physiol, 586(7): 1803–1810

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hansen H H, Andreasen J T, Weikop P, Mirza N, Scheel-Krüger J, Mikkelsen J D (2007). The neuronal KCNQ channel opener retigabine inhibits locomotor activity and reduces forebrain excitatory responses to the psychostimulants cocaine, methylphenidate and phencyclidine. Eur J Pharmacol, 570(1–3): 77–88

    CAS  PubMed  Google Scholar 

  • Hernandez C C, Zaika O, Shapiro M S (2008). A carboxy-terminal interhelix linker as the site of phosphatidylinositol 4,5-bisphosphate action on Kv7 (M-type) K+ channels. J Gen Physiol, 132(3): 361–381

    CAS  PubMed Central  PubMed  Google Scholar 

  • Higashida H, Hoshi N, Zhang J S, Yokoyama S, Hashii M, Jin D, Noda M, Robbins J (2005). Protein kinase C bound with A-kinase anchoring protein is involved in muscarinic receptor-activated modulation of M-type KCNQ potassium channels. Neurosci Res, 51(3): 231–234

    CAS  PubMed  Google Scholar 

  • Hoeflich K P, Ikura M (2002). Calmodulin in action: diversity in target recognition and activation mechanisms. Cell, 108(6): 739–742

    CAS  PubMed  Google Scholar 

  • Hoshi N, Langeberg L K, Scott J D (2005). Distinct enzyme combinations in AKAP signalling complexes permit functional diversity. Nat Cell Biol, 7(11): 1066–1073

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoshi N, Zhang J S, Omaki M, Takeuchi T, Yokoyama S, Wanaverbecq N, Langeberg L K, Yoneda Y, Scott J D, Brown D A, Higashida H (2003). AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists. Nat Neurosci, 6(6): 564–571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Howard A L, Neu A, Morgan R J, Echegoyen J C, Soltesz I (2007a). Opposing modifications in intrinsic currents and synaptic inputs in post-traumatic mossy cells: evidence for single-cell homeostasis in a hyperexcitable network. J Neurophysiol, 97(3): 2394–2409

    CAS  PubMed  Google Scholar 

  • Howard R J, Clark K A, Holton J M, Minor D L Jr (2007b). Structural insight into KCNQ (Kv7) channel assembly and channelopathy. Neuron, 53(5): 663–675

    CAS  PubMed Central  PubMed  Google Scholar 

  • Korsgaard M P, Hartz B P, Brown W D, Ahring P K, Strøbaek D, Mirza N R (2005). Anxiolytic effects of Maxipost (BMS-204352) and retigabine via activation of neuronal Kv7 channels. J Pharmacol Exp Ther, 314(1): 282–292

    CAS  PubMed  Google Scholar 

  • Kosenko A, Kang S, Smith I M, Greene D L, Langeberg L K, Scott J D, Hoshi N (2012). Coordinated signal integration at the M-type potassium channel upon muscarinic stimulation. EMBO J, 31(14): 3147–3156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kwan P, Brodie M J (2000). Epilepsy after the first drug fails: substitution or add-on? Seizure, 9(7): 464–468

    CAS  PubMed  Google Scholar 

  • Lai H C, Jan L Y (2006). The distribution and targeting of neuronal voltage-gated ion channels. Nat Rev Neurosci, 7(7): 548–562

    CAS  PubMed  Google Scholar 

  • Large C H, Sokal D M, Nehlig A, Gunthorpe M J, Sankar R, Crean C S, Vanlandingham K E, White H S (2012). The spectrum of anticonvulsant efficacy of retigabine (ezogabine) in animal models: implications for clinical use. Epilepsia, 53(3): 425–436

    CAS  PubMed  Google Scholar 

  • Lerche H, Biervert C, Alekov A K, Schleithoff L, Lindner M, Klinger W, Bretschneider F, Mitrovic N, Jurkat-Rott K, Bode H, Lehmann-Horn F, Steinlein O K (1999). A reduced K+ current due to a novel mutation in KCNQ2 causes neonatal convulsions. Ann Neurol, 46(3): 305–312

    CAS  PubMed  Google Scholar 

  • Li Y, Gamper N, Hilgemann DW, Shapiro MS (2005). Regulation of Kv7 (KCNQ) K+ channel open probability by phosphatidylinositol 4,5-bisphosphate. J Neurosci, 25: 9825–9835

    CAS  PubMed  Google Scholar 

  • Liu W, Devaux J J (2014). Calmodulin orchestrates the heteromeric assembly and the trafficking of KCNQ2/3 (Kv7.2/3) channels in neurons. Mol Cell Neurosci, 58: 40–52

    PubMed  Google Scholar 

  • Maljevic S, Wuttke T V, Lerche H (2008). Nervous system KV7 disorders: breakdown of a subthreshold brake. J Physiol, 586(7): 1791–1801

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martire M, Castaldo P, D’Amico M, Preziosi P, Annunziato L, Taglialatela M (2004). M channels containing KCNQ2 subunits modulate norepinephrine, aspartate, and GABA release from hippocampal nerve terminals. J Neurosci, 24: 592–597

    CAS  PubMed  Google Scholar 

  • Moulard B, Picard F, le Hellard S, Agulhon C, Weiland S, Favre I, Bertrand S, Malafosse A, Bertrand D (2001). Ion channel variation causes epilepsies. Brain Res Brain Res Rev, 36(2–3): 275–284

    CAS  PubMed  Google Scholar 

  • Ohtahara S, Yamatogi Y (2006). Ohtahara syndrome: with special reference to its developmental aspects for differentiating from early myoclonic encephalopathy. Epilepsy Res, 70(Suppl 1): S58–S67

    PubMed  Google Scholar 

  • Orhan G, Bock M, Schepers D, Ilina E I, Reichel S N, Loffler H, Jezutkovic N, Weckhuysen S, Mandelstam S, Suls A, Danker T, Guenther E, Scheffer I E, Jonghe P D, Lerche H, Maljevic S (2013). Dominant-negative Effects of KCNQ2 mutations are associated with epileptic encephalopathy. Ann Neurol, 75(3): 382–394

    Google Scholar 

  • Pan Z, Kao T, Horvath Z, Lemos J, Sul J Y, Cranstoun S D, Bennett V, Scherer S S, Cooper E C (2006). A common ankyrin-G-based mechanism retains KCNQ and NaV channels at electrically active domains of the axon. J Neurosci, 26: 2599–2613

    CAS  PubMed  Google Scholar 

  • Passmore G M, Selyanko A A, Mistry M, Al-Qatari M, Marsh S J, Matthews E A, Dickenson AH, Brown T A, Burbidge S A, Main M, Brown D A (2003). KCNQ/M currents in sensory neurons: significance for pain therapy. J Neurosci, 23: 7227–7236

    CAS  PubMed  Google Scholar 

  • Peretz A, Sheinin A, Yue C, Degani-Katzav N, Gibor G, Nachman R, Gopin A, Tam E, Shabat D, Yaari Y, Attali B (2007). Pre- and postsynaptic activation of M-channels by a novel opener dampens neuronal firing and transmitter release. J Neurophysiol, 97(1): 283–295

    CAS  PubMed  Google Scholar 

  • Peters H C, Hu H, Pongs O, Storm J F, Isbrandt D (2005). Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior. Nat Neurosci, 8(1): 51–60

    CAS  PubMed  Google Scholar 

  • Psenka T M, Holden K R (1996). Benign familial neonatal convulsions; psychosocial adjustment to the threat of recurrent seizures. Seizure, 5(3): 243–245

    CAS  PubMed  Google Scholar 

  • Rasmussen H B, Frøkjaer-Jensen C, Jensen C S, Jensen H S, Jørgensen N K, Misonou H, Trimmer J S, Olesen S P, Schmitt N (2007). Requirement of subunit co-assembly and ankyrin-G for M-channel localization at the axon initial segment. J Cell Sci, 120(Pt 6): 953–963

    CAS  PubMed  Google Scholar 

  • Regev N, Degani-Katzav N, Korngreen A, Etzioni A, Siloni S, Alaimo A, Chikvashvili D, Villarroel A, Attali B, Lotan I (2009). Selective interaction of syntaxin 1A with KCNQ2: possible implications for specific modulation of presynaptic activity. PLoS One, 4(8): e6586

    PubMed Central  PubMed  Google Scholar 

  • Richards M C, Heron S E, Spendlove H E, Scheffer I E, Grinton B, Berkovic S F, Mulley J C, Davy A (2004). Novel mutations in the KCNQ2 gene link epilepsy to a dysfunction of the KCNQ2-calmodulin interaction. J Med Genet, 41(3): e35

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robbins J (2001). KCNQ potassium channels: physiology, pathophy-siology, and pharmacology. Pharmacol Ther, 90(1): 1–19

    CAS  PubMed  Google Scholar 

  • Roche J P, Westenbroek R, Sorom A J, Hille B, Mackie K, Shapiro M S (2002). Antibodies and a cysteine-modifying reagent show correspondence of M current in neurons to KCNQ2 and KCNQ3 K+ channels. Br J Pharmacol, 137(8): 1173–1186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rostock A, Tober C, Rundfeldt C, Bartsch R, Engel J, Polymeropoulos E E, Kutscher B, Löscher W, Hönack D, White H S, Wolf H H (1996). D-23129: a new anticonvulsant with a broad spectrum activity in animal models of epileptic seizures. Epilepsy Res, 23(3): 211–223

    CAS  PubMed  Google Scholar 

  • Saitsu H, Kato M, Koide A, Goto T, Fujita T, Nishiyama K, Tsurusaki Y, Doi H, Miyake N, Hayasaka K, Matsumoto N (2012). Whole exome sequencing identifies KCNQ2 mutations in Ohtahara syndrome. Ann Neurol, 72(2): 298–300

    CAS  PubMed  Google Scholar 

  • Schmitt B, Wohlrab G, Sander T, Steinlein O K, Hajnal B L (2005). Neonatal seizures with tonic clonic sequences and poor developmental outcome. Epilepsy Res, 65(3): 161–168

    PubMed  Google Scholar 

  • Schroeder B C, Kubisch C, Stein V, Jentsch T J (1998). Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature, 396(6712): 687–690

    CAS  PubMed  Google Scholar 

  • Schwake M, Athanasiadu D, Beimgraben C, Blanz J, Beck C, Jentsch TJ, Saftig P, Friedrich T (2006). Structural determinants of M-type KCNQ (Kv7) K+ channel assembly. J Neurosci, 26: 3757–3766

    CAS  PubMed  Google Scholar 

  • Schwake M, Jentsch T J, Friedrich T (2003). A carboxy-terminal domain determines the subunit specificity of KCNQ K+ channel assembly. EMBO Rep, 4(1): 76–81

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schwake M, Pusch M, Kharkovets T, Jentsch T J (2000). Surface expression and single channel properties of KCNQ2/KCNQ3, Mtype K+ channels involved in epilepsy. J Biol Chem, 275(18): 13343–13348

    CAS  PubMed  Google Scholar 

  • Schwarz J R, Glassmeier G, Cooper E C, Kao T C, Nodera H, Tabuena D, Kaji R, Bostock H (2006). KCNQ channels mediate IKs, a slow K+ current regulating excitability in the rat node of Ranvier. J Physiol, 573(Pt 1): 17–34

    CAS  PubMed Central  PubMed  Google Scholar 

  • Selyanko A A, Brown D A (1996). Intracellular calcium directly inhibits potassium M channels in excised membrane patches from rat sympathetic neurons. Neuron, 16(1): 151–162

    CAS  PubMed  Google Scholar 

  • Shah M M, Migliore M, Brown D A (2011). Differential effects of Kv7 (M-) channels on synaptic integration in distinct subcellular compartments of rat hippocampal pyramidal neurons. J Physiol, 589(Pt 24): 6029–6038

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shah M M, Migliore M, Valencia I, Cooper E C, Brown D A (2008). Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons. Proc Natl Acad Sci U S A, 105(22): 7869–7874

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shah M, Mistry M, Marsh S J, Brown D A, Delmas P (2002). Molecular correlates of the M-current in cultured rat hippocampal neurons. J Physiol, 544(Pt 1): 29–37

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shahidullah M, Santarelli L C, Wen H, Levitan I B (2005). Expression of a calmodulin-binding KCNQ2 potassium channel fragment modulates neuronal M-current and membrane excitability. Proc Natl Acad Sci U S A, 102(45): 16454–16459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh NA, Westenskow P, Charlier C, Pappas C, Leslie J, Dillon J, Anderson VE, Sanguinetti MC, Leppert MF (2003) KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. Brain, 126: 2726–2737

    PubMed  Google Scholar 

  • Soldovieri M V, Boutry-Kryza N, Milh M, Doummar D, Heron B, Bourel E, Ambrosino P, Miceli F, De Maria M, Dorison N, Auvin S, Echenne B, Oertel J, Riquet A, Lambert L, Gerard M, Roubergue A, Calender A, Mignot C, Taglialatela M, Lesca G (2014). Novel KCNQ2 and KCNQ3 mutations in a large cohort of families with benign neonatal epilepsy: first evidence for an altered channel regulation by syntaxin-1A. Hum Mutat, 35(3): 356–367

    CAS  PubMed  Google Scholar 

  • Soldovieri M V, Castaldo P, Iodice L, Miceli F, Barrese V, Bellini G, Miraglia del Giudice E, Pascotto A, Bonatti S, Annunziato L, Taglialatela M (2006). Decreased subunit stability as a novel mechanism for potassium current impairment by a KCNQ2 C terminus mutation causing benign familial neonatal convulsions. J Biol Chem, 281(1): 418–428

    CAS  PubMed  Google Scholar 

  • Soldovieri MV, Miceli F, Taglialatela M (2011). Driving with no brakes: molecular pathophysiology of Kv7 potassium channels. Physiology (Bethesda), 26(5): 365–376

    CAS  Google Scholar 

  • Song A H, Wang D, Chen G, Li Y, Luo J, Duan S, Poo M M (2009). A selective filter for cytoplasmic transport at the axon initial segment. Cell, 136(6): 1148–1160

    CAS  PubMed  Google Scholar 

  • Suh B C, Hille B (2002). Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis. Neuron, 35(3): 507–520

    CAS  PubMed  Google Scholar 

  • Suh B C, Hille B (2007). Regulation of KCNQ channels by manipulation of phosphoinositides. J Physiol, 582(Pt 3): 911–916

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suh B C, Horowitz L F, Hirdes W, Mackie K, Hille B (2004). Regulation of KCNQ2/KCNQ3 current by G protein cycling: the kinetics of receptor-mediated signaling by Gq. J Gen Physiol, 123(6): 663–683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Surti T S, Jan L Y (2005). A potassium channel, the M-channel, as a therapeutic target. Curr Opin Investig Drugs, 6(7): 704–711

    CAS  PubMed  Google Scholar 

  • Tober C, Rostock A, Rundfeldt C, Bartsch R (1996). D-23129: a potent anticonvulsant in the amygdala kindling model of complex partial seizures. Eur J Pharmacol, 303(3): 163–169

    CAS  PubMed  Google Scholar 

  • Tzingounis AV, Heidenreich M, Kharkovets T, Spitzmaul G, Jensen H S, Nicoll R A, Jentsch T J (2010). The KCNQ5 potassium channel mediates a component of the afterhyperpolarization current in mouse hippocampus. Proc Natl Acad Sci U S A, 107(22): 10232–10237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tzingounis A V, Nicoll R A (2008). Contribution of KCNQ2 and KCNQ3 to the medium and slow afterhyperpolarization currents. Proc Natl Acad Sci U S A, 105(50): 19974–19979

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang H S, Pan Z, Shi W, Brown B S, Wymore R S, Cohen I S, Dixon J E, McKinnon D (1998). KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science, 282(5395): 1890–1893

    CAS  PubMed  Google Scholar 

  • Watanabe H, Nagata E, Kosakai A, Nakamura M, Yokoyama M, Tanaka K, Sasai H (2000). Disruption of the epilepsy KCNQ2 gene results in neural hyperexcitability. J Neurochem, 75(1): 28–33

    CAS  PubMed  Google Scholar 

  • Weckhuysen S, Mandelstam S, Suls A, Audenaert D, Deconinck T, Claes L R, Deprez L, Smets K, Hristova D, Yordanova I, Jordanova A, Ceulemans B, Jansen A, Hasaerts D, Roelens F, Lagae L, Yendle S, Stanley T, Heron S E, Mulley J C, Berkovic S F, Scheffer I E, de Jonghe P (2012). KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol, 71(1): 15–25

    CAS  PubMed  Google Scholar 

  • Wen H, Levitan IB (2002) Calmodulin is an auxiliary subunit of KCNQ2/3 potassium channels. J Neurosci, 22: 7991–8001

    CAS  PubMed  Google Scholar 

  • Winks JS, Hughes S, Filippov A K, Tatulian L, Abogadie F C, Brown D A, Marsh S J (2005). Relationship between membrane phosphatidylinositol-4,5-bisphosphate and receptor-mediated inhibition of native neuronal M channels. J Neurosci, 25: 3400–3413

    CAS  PubMed  Google Scholar 

  • Wong W, Scott J D (2004). AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol, 5(12): 959–970

    CAS  PubMed  Google Scholar 

  • Wuttke T V, Jurkat-Rott K, Paulus W, Garncarek M, Lehmann-Horn F, Lerche H (2007). Peripheral nerve hyperexcitability due to dominantnegative KCNQ2 mutations. Neurology, 69(22): 2045–2053

    CAS  PubMed  Google Scholar 

  • Xu Q, Chang A, Tolia A, Minor D L Jr (2013). Structure of a Ca(2+)/CaM:Kv7.4 (KCNQ4) B-helix complex provides insight into M current modulation. J Mol Biol, 425(2): 378–394

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yue C, Yaari Y (2004) KCNQ/M channels control spike afterdepolarization and burst generation in hippocampal neurons. J Neurosci, 24: 4614–4624

    CAS  PubMed  Google Scholar 

  • Yue C, Yaari Y (2006) Axo-somatic and apical dendritic Kv7/M channels differentially regulate the intrinsic excitability of adult rat CA1 pyramidal cells. J Neurophysiol, 95(6): 3480–3495

    CAS  PubMed  Google Scholar 

  • Yus-Najera E, Santana-Castro I, Villarroel A (2002). The identification and characterization of a noncontinuous calmodulin-binding site in noninactivating voltage-dependent KCNQ potassium channels. J Biol Chem, 277(32): 28545–28553

    CAS  PubMed  Google Scholar 

  • Zaika O, Tolstykh G P, Jaffe D B, Shapiro M S (2007) Inositol triphosphate-mediated Ca2+ signals direct purinergic P2Y receptor regulation of neuronal ion channels. J Neurosci, 27: 8914–8926

    CAS  PubMed  Google Scholar 

  • Zhang H, Craciun L C, Mirshahi T, Rohács T, Lopes C M, Jin T, Logothetis D E (2003). PIP(2) activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron, 37(6): 963–975

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee Jung Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, H.J. Role of calmodulin in neuronal Kv7/KCNQ potassium channels and epilepsy. Front. Biol. 9, 205–215 (2014). https://doi.org/10.1007/s11515-014-1305-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-014-1305-3

Keywords

Navigation