Skip to main content
Log in

Eugenol Nanoencapsulated by Sodium Caseinate: Physical, Antimicrobial, and Biophysical Properties

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

To improve the application of essential oils as natural antimicrobial preservatives, the objective of the present study was to determine physical, antimicrobial, and biophysical properties of eugenol after nanoencapsulation by sodium caseinate (NaCas). Emulsions were prepared by mixing eugenol in 20.0 mg/mL NaCas solution at an overall eugenol content of 5.0–137.9 mg/mL using shear homogenization. Stable emulsions were observed up to 38.5 mg/mL eugenol, which had droplet diameters of smaller than 125 nm at pH 5–9 after ambient storage for up to 30 days. The encapsulated eugenol had similar minimal inhibitory and minimal bactericidal concentrations as free eugenol against Escherichia coli O157:H7 ATCC 43895, Listeria monocytogenes Scott A, and Salmonella Enteritidis but showed better inhibition of E. coli O157:H7 than free eugenol during incubation at 37 °C for 48 h. After 20 min interaction at 21 °C, bacteria treated with encapsulated eugenol had a greater reduction of intracellular ATP and a greater increase of extracellular ATP than free eugenol, suggesting the enhanced permeation of eugenol after nanoencapsulation. However, such overall trend was not observed when examining bacterial morphology and uptake of crystal violet, suggesting the possible membrane adaptation. Findings from this study showed the feasibility of preparing nanoemulsions with high loading of eugenol using NaCas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Burt, Int. J. Food Microbiol. 94, 223 (2004). https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

    Article  CAS  Google Scholar 

  2. K. Ziani, Y. Chang, L. McLandsborough, D.J. McClements, J. Agric. Food Chem. 59, 6247 (2011). https://doi.org/10.1021/jf200450m

    Article  CAS  Google Scholar 

  3. C. Beristain, H. Garcıa, E. Vernon-Carter, LWT-Food Sci. Technol. 34, 398 (2001)

    Article  CAS  Google Scholar 

  4. D.A. Rodea-González, J. Cruz-Olivares, A. Román-Guerrero, M.E. Rodríguez-Huezo, E.J. Vernon-Carter, C. Pérez-Alonso, J. Food Eng. 111, 102 (2012). https://doi.org/10.1016/j.jfoodeng.2012.01.020

    Article  Google Scholar 

  5. C. Liolios, O. Gortzi, S. Lalas, J. Tsaknis, I. Chinou, Food Chem. 112, 77 (2009). https://doi.org/10.1016/j.foodchem.2008.05.060

    Article  CAS  Google Scholar 

  6. M.-J. Choi, A. Soottitantawat, O. Nuchuchua, S.-G. Min, U. Ruktanonchai, Food Res. Int. 42, 148 (2009). https://doi.org/10.1016/j.foodres.2008.09.011

    Article  CAS  Google Scholar 

  7. S. Gaysinsky, T.M. Taylor, P.M. Davidson, B.D. Bruce, J. Weiss, J. Food Prot. 70, 2631 (2007). https://doi.org/10.4315/0362-028X-70.11.2631

    Article  Google Scholar 

  8. Q. Ma, P.M. Davidson, Q. Zhong, Int. J. Food Microbiol. 166, 77 (2013). https://doi.org/10.1016/j.ijfoodmicro.2013.06.017

    Article  CAS  Google Scholar 

  9. E.N. Frankel, S.-W. Huang, R. Aeschbach, E. Prior, J. Agric. Food Chem. 44, 131 (1996). https://doi.org/10.1021/jf950374p

    Article  CAS  Google Scholar 

  10. Y. Zhang, Q.X. Zhong, Food Hydrocoll 33, 1 (2013). https://doi.org/10.1016/j.foodhyd.2013.02.009

    Article  Google Scholar 

  11. K. Pan, Q. Zhong, S.J. Baek, J. Agric. Food Chem. 61, 6036 (2013). https://doi.org/10.1021/jf400752a

    Article  CAS  Google Scholar 

  12. H.Q. Chen, Y. Zhang, Q.X. Zhong, J. Food Eng. 144, 93 (2015). https://doi.org/10.1016/j.jfoodeng.2014.07.021

    Article  CAS  Google Scholar 

  13. J. Xue, Q. Zhong, J. Agric. Food Chem. 62, 9900 (2014). https://doi.org/10.1021/jf5034366

    Article  CAS  Google Scholar 

  14. K. Pan, H. Chen, P.M. Davidson, Q. Zhong, J. Agric. Food Chem. 62, 1649 (2014). https://doi.org/10.1021/jf4055402

    Article  CAS  Google Scholar 

  15. K.P. Devi, S.A. Nisha, R. Sakthivel, S.K. Pandian, J. Ethnopharmacol. 130, 107 (2010). https://doi.org/10.1016/j.jep.2010.04.025

    Article  CAS  Google Scholar 

  16. H. Chen, P.M. Davidson, Q. Zhong, App. Environ. Microbiol. 80, 907 (2014). https://doi.org/10.1128/AEM.03010-13

    Article  Google Scholar 

  17. M. Oussalah, S. Caillet, M. Lacroix, J. Food Prot. 69, 1046 (2006). https://doi.org/10.4315/0362-028X-69.5.1046

    Article  Google Scholar 

  18. M. Srinivasan, H. Singh, P.A. Munro, J. Agric. Food Chem. 44, 3807 (1996). https://doi.org/10.1021/jf960135h

    Article  CAS  Google Scholar 

  19. NIST. NIST WEBbook (http://webbook.nist.gov/chemistry), last Accessed on Dec. 6, 2017

  20. N. Terjung, M. Loffler, M. Gibis, J. Hinrichs, J. Weiss, Food Funct. 3, 290 (2012). https://doi.org/10.1039/C2FO10198J

    Article  CAS  Google Scholar 

  21. S.F. Hosseini, M. Zandi, M. Rezaei, F. Farahmandghavi, Carbohydr. Polym. 95, 50 (2013). https://doi.org/10.1016/j.carbpol.2013.02.031

    Article  CAS  Google Scholar 

  22. K. Pan, Y. Luo, Y. Gan, S.J. Baek, Q. Zhong, Soft Matter 10, 6820 (2014). https://doi.org/10.1039/C4SM00239C

    Article  CAS  Google Scholar 

  23. R. van der Lee et al., Chem. Rev. 114, 6589 (2014)

    Article  Google Scholar 

  24. H. Bouzid, M. Rabiller-Baudry, L. Paugam, F. Rousseau, Z. Derriche, N.E. Bettahar, J. Membrane Sci. 314, 67 (2008). https://doi.org/10.1016/j.memsci.2008.01.028

    Article  CAS  Google Scholar 

  25. E. Dickinson, Food Hydrocoll 23, 1473 (2009). https://doi.org/10.1016/j.foodhyd.2008.08.005

    Article  CAS  Google Scholar 

  26. S. Hemaiswarya, M. Doble, Phytomedicine 16, 997 (2009). https://doi.org/10.1016/j.phymed.2009.04.006

    Article  CAS  Google Scholar 

  27. K. Knobloch, A. Pauli, B. Iberl, H. Weigand, N. Weis, J. Essent. Oil Res. 1, 119 (1989). https://doi.org/10.1080/10412905.1989.9697767

    Article  CAS  Google Scholar 

  28. A. Gill, R. Holley, Int. J. Food Microbiol. 108, 1 (2006). https://doi.org/10.1016/j.ijfoodmicro.2005.10.009

    Article  CAS  Google Scholar 

  29. M. Rohmer, in Comprehensive natural products II: Chemistry and Biology, edited by L. Mander, and H.-W. Liu (Newnes, 2010), pp. 517

  30. X. Hui, G. Yan, F.-L. Tian, H. Li, W.-Y. Gao, Med. Chem. Res. 26, 442 (2016)

    Google Scholar 

  31. H.A. Bladen, S.E. Mergenhagen, J. Bacteriol. 88, 1482 (1964)

    CAS  Google Scholar 

  32. M. Kong, X.G. Chen, K. Xing, H.J. Park, Int. J. Food Microbiol. 144, 51 (2010). https://doi.org/10.1016/j.ijfoodmicro.2010.09.012

    Article  CAS  Google Scholar 

  33. J. Xue, P.M. Davidson, Q. Zhong, Int. J. Food Microbiol. 210, 1 (2015). https://doi.org/10.1016/j.ijfoodmicro.2015.06.003

    Article  CAS  Google Scholar 

  34. T. Ohta, K. Nagano, M. Yoshida, P. Natl, Acad. Sci. 83, 2071 (1986). https://doi.org/10.1073/pnas.83.7.2071

    Article  CAS  Google Scholar 

  35. J.-Y. Lee, Y.-S. Kim, D.-H. Shin, J. Agric. Food Chem. 50, 2193 (2002). https://doi.org/10.1021/jf011175a

    Article  CAS  Google Scholar 

  36. J. Sikkema, J. De Bont, B. Poolman, Microbiol. Rev. 59, 201 (1995)

    CAS  Google Scholar 

  37. P.D. Cani, A. Everard, Trend. Endocrinol. Met. 26, 273 (2015). https://doi.org/10.1016/j.tem.2015.03.009

    Article  CAS  Google Scholar 

  38. R.V. Stahelin, W. Cho, Biochemistry 40, 4672 (2001). https://doi.org/10.1021/bi0020325

    Article  CAS  Google Scholar 

  39. M. Sokolovski, T. Sheynis, S. Kolusheva, R. Jelinek, BBA-Biomembranes 1778, 2341 (2008). https://doi.org/10.1016/j.bbamem.2008.07.001

    Article  CAS  Google Scholar 

  40. T. Hira, H. Hara, F. Tomita, Y. Aoyama, Exp. Biol. Med. 228, 850 (2003). https://doi.org/10.1177/15353702-0322807-11

    Article  CAS  Google Scholar 

  41. F. Nazzaro, F. Fratianni, L. De Martino, R. Coppola, V. De Feo, Pharmaceuticals (Basel) 6, 1451 (2013). https://doi.org/10.3390/ph6121451

    Article  Google Scholar 

  42. Y.M. Zhang, C.O. Rock, Nat. Rev. Microbiol. 6, 222 (2008). https://doi.org/10.1038/nrmicro1839

    Article  Google Scholar 

  43. R.Y. Chiou, R.D. Phillips, P. Zhao, M.P. Doyle, L.R. Beuchat, Appl. Environ. Microbiol. 70, 2204 (2004). https://doi.org/10.1128/AEM.70.4.2204-2210.2004

    Article  CAS  Google Scholar 

  44. F. Foglia, A.F. Drake, A.E. Terry, S.E. Rogers, M.J. Lawrence, D.J. Barlow, BBA-Biomembranes 1808, 1574 (2011). https://doi.org/10.1016/j.bbamem.2011.02.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Dr. Yangchao Luo for assisting SEM experiments. This work was supported by The University of Tennessee, the USDA NIFA Hatch Project 223984 and TEN02010-03476, and Dairy Research Institute (Rosemont, IL, USA). Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qixin Zhong.

Electronic supplementary material

ESM 1

(DOCX 215 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Pan, K. & Zhong, Q. Eugenol Nanoencapsulated by Sodium Caseinate: Physical, Antimicrobial, and Biophysical Properties. Food Biophysics 13, 37–48 (2018). https://doi.org/10.1007/s11483-017-9509-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-017-9509-0

Keywords

Navigation