Skip to main content
Log in

Novel Antimicrobial and Antioxidant Chitosan Derivatives Prepared by Green Grafting with Phenyllactic Acid

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

In order to develop novel antimicrobial and antioxidant biopolymers for active packaging to improve quality and safety of food products, we for the first time grafted phenyllatic acid (PLA) on chitosan (CS) using a green and facile method. The reaction between PLA and CS was confirmed by UV − vis and Fourier-transform infrared spectroscopy. The grafting ratio was 5.72%, 9.16% and 11.83%, respectively, at a PLA:CS molar ratio of 1:1, 2:1, and 3:1. The grafting of PLA on CS reduced the thermal decomposition temperature of CS according to differential scanning calorimetry. A greater grafting ratio corresponded to a higher activity of scavenging 2, 2-diphenyl-1-picrylhydrazyl radicals and inhibition to growth of Gram-positive Staphylococcus aureus and Listeria monocytogenes, Gram-negative Escherichia coli and Salmonella enterica, and fungi Saccharomyces cerevisiae and Penicillium expansum (P < 0.05). These novel CS derivatives have potential to reduce oxidation and inhibit spoilage microorganisms to improve food quality and safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.A. Wani, P. Singh, H.C. Langowski, Encyclopedia of Food Safety (Academic Press, NY, 2014), pp. 211–218

    Book  Google Scholar 

  2. K. Majeed, M. Jawaid, A. Hassan, A.A. Bakar, H.A. Khalil, A.A. Salema, I. Inuwa, Mater Design 46, 391–410 (2013)

    Article  CAS  Google Scholar 

  3. M. Aider, LWT-Food Sci Technol 43, 837–842 (2010)

    Article  CAS  Google Scholar 

  4. J. Sundaram, J. Pant, M.J. Goudie, S. Mani, H. Handa, J Agric Food Chem 64(25), 5260–5266 (2016)

    Article  CAS  Google Scholar 

  5. M.P. Souza, A.F. Vaz, H.D. Silva, M.A. Cerqueira, A.A. Vicente, M.G. Carneiro-da-Cunha, Food Bioprocess Technol 8(11), 2183–2191 (2015)

    Article  CAS  Google Scholar 

  6. P.K. Dutta, S. Tripathi, G.K. Mehrotra, J. Dutta, Food Chem 114, 1173–1182 (2009)

    Article  CAS  Google Scholar 

  7. Zhang C, Ding Y, Yu L. L, & Ping Q, Colloid Surfaces B. 55(2), 192–199 (2007)

  8. V.K. Thakur, M.K. Thakur, ACS Sustain Chem Eng 2(12), 2637–2652 (2014)

    Article  CAS  Google Scholar 

  9. N.S. Chatterjee, S.K. Panda, M. Navitha, K.K. Asha, R. Anandan, S. Mathew, Int J Food Sci Technol 52(11), 7153–7162 (2015)

    Article  CAS  Google Scholar 

  10. W. Mu, S. Yu, L. Zhu, T. Zhang, B. Jiang, Appl Microbiol Biotechnol 95(5), 1155–1163 (2012)

    Article  CAS  Google Scholar 

  11. Wang J P, Yoo J S, Lee J H, Zhou T. X, Jang H. D, Kim H. J, & Kim I. H, J Appl Poult Res 18(2), 203–209 (2009)

  12. S. Crowley, J. Mahony, D. van Sinderen, Trends Food Sci Technol 33(2), 93–109 (2013)

    Article  CAS  Google Scholar 

  13. H.M. Badawi, W. Förner, S.A. Ali, J Mol Struct 1093(150–161) (2015)

  14. J. Liu, J.F. Lu, J. Kan, C.H. Jin, Int J Biol Macromol 62, 321–329 (2013)

    Article  CAS  Google Scholar 

  15. A. Hardiansyah, L.Y. Huang, M.C. Yang, B.S. Purwasasmita, T.Y. Liu, C.Y. Kuo, H.L. Liao, T.Y. Chan, H.M. Tzou, W.Y. Chiu, RSC Adv 5(30), 23134–23143 (2015)

    Article  CAS  Google Scholar 

  16. Q. Hu, T. Wang, M. Zhou, J. Xue, Y. Luo, J Agric Food Chem 64(29), 5893–5900 (2016)

    Article  CAS  Google Scholar 

  17. S. Dudonné, X. Vitrac, P. Coutière, M. Woillez, J.M. Mérillon, J Agric Food Chem 57(5), 1768–1774 (2009)

    Article  Google Scholar 

  18. S. Woranuch, R. Yoksan, Carbohydr Polym 96(2), 495–502 (2013)

    Article  CAS  Google Scholar 

  19. I. Khan, S. Ullah, D.H. Oh, Carbohydr Polym 152, 87–96 (2016)

    Article  CAS  Google Scholar 

  20. A.S. Habeeb, A, Anal Biochem 14(3), 328–336 (1966)

    Article  CAS  Google Scholar 

  21. R.B. Sashidhar, A.K. Capoor, D. Ramana, J Immunol Methods 167(1–2), 121–127 (1994)

    Article  CAS  Google Scholar 

  22. D.J. Evans, D.J. Searles, E. Mittag, Phys Rev E 63(5), 051105 (2001)

    Article  CAS  Google Scholar 

  23. Y.S. Cho, S.K. Kim, C.B. Ahn, J.Y. Je, Carbohydr Polym 83(4), 1617–1622 (2011)

    Article  CAS  Google Scholar 

  24. L. Jin, R. Bai, Langmuir 18(25), 9765–9770 (2002)

    Article  CAS  Google Scholar 

  25. C.A. Hunter, K.R. Lawson, J. Perkins, C.J. Urch, J Chem Soc Perkin Trans 2(5), 651–669 (2001)

    Article  Google Scholar 

  26. M. Božič, S. Gorgieva, V. Kokol, Carbohydr Polym 87(4), 2388–2398 (2012)

    Article  Google Scholar 

  27. A. Pawlak, M. Mucha, Thermochim Acta 396(1), 153–166 (2003)

    Article  CAS  Google Scholar 

  28. R. Ramya, P.N. Sudha, J. Mahalakshmi, Int J Sci Res Publ 2(10), 1–9 (2012)

    Google Scholar 

  29. P.S. Navare, J.C. MacDonald, Cryst Growth Des 11(6), 2422–2428 (2011)

    Article  CAS  Google Scholar 

  30. H. Tsuji, H. Matsuoka, S. Itsuno, J Appl Polym Sci 110(6), 3954–3962 (2008)

    Article  CAS  Google Scholar 

  31. F.S. Pereira, D.L. da Silva Agostini, A.E. Job, E.R.P. González, J Therm Anal Calorim 114(1), 321–327 (2013)

    Article  CAS  Google Scholar 

  32. C.G.T. Neto, J. Giacometti, A. Job, F. Ferreira, J. Fonseca, M. Pereira, Carbohydr Polym 62(2), 97–103 (2005)

    Article  CAS  Google Scholar 

  33. M. Valko, C.J. Rhodes, J. Moncol, M.M. Izakovic, M. Mazur, Chem Biol Interact 160(1), 1–40 (2006)

    Article  CAS  Google Scholar 

  34. G.A. Mun, Z.S. Nurkeeva, S.A. Dergunov, I.K. Nam, T.P. Maimakov, E.M. Shaikhutdinov, S.C. Lee, K. Park, React Funct Polym 68(1), 389–395 (2008)

    Article  CAS  Google Scholar 

  35. J. Lilja, D.Y. Murzin, T. Salmi, J. Aumo, P. Mäki-Arvela, M. Sundell, J Mol Catal A Chem 182, 555–563 (2002)

    Article  Google Scholar 

  36. X. Li, X. Wang, D. Chen, Chen, Funct Foods Health Dis 1(7), 232–244 (2011)

    CAS  Google Scholar 

  37. M. Xie, B. Hu, Y. Wang, X. Zeng, J Agric Food Chem 62(37), 9128–9136 (2014)

    Article  CAS  Google Scholar 

  38. M. Curcio, F. Puoci, F. Iemma, O.I. Parisi, G. Cirillo, U.G. Spizzirri, N. Picci, J Agric Food Chem 57(13), 5933–5938 (2009)

    Article  CAS  Google Scholar 

  39. J. Vinsova, E. Vavrikova, Curr Pharm Design 17(32), 3596–3607 (2011)

    Article  CAS  Google Scholar 

  40. W. Zhu, Z. Zhang, Int J Biol Macromol 70, 150–155 (2014)

    Article  CAS  Google Scholar 

  41. D. Zhao, J. Wang, L. Tan, C. Sun, J. Dong, Int J Biol Macromol 59, 391–395 (2013)

    Article  CAS  Google Scholar 

  42. M. Liu, L. Min, C. Zhu, Z. Rao, L. Liu, W. Xu, P. Luo, L. Fan, Int J Biol Macromol 104, 732–738 (2017)

    Article  CAS  Google Scholar 

  43. A.B.V. Kumar, M.C. Varadaraj, L.R. Gowda, R.N. Tharanathan, BBA-Gen Subjects 1770(4), 495–505 (2007)

    Article  CAS  Google Scholar 

  44. Y. Wang, J. Li, B. Li, J Agric Food Chem 64(28), 5736–5741 (2016)

    Article  CAS  Google Scholar 

  45. A. Di Martino, M. Sittinger, M.V. Risbud, Biomaterials 26(30), 5983–5990 (2005)

    Article  Google Scholar 

  46. V. Dieuleveux, M. Gueguen, J Food Prot 61(10), 1281–1285 (1998)

    Article  CAS  Google Scholar 

  47. P. Lavermicocca, F. Valerio, A. Visconti, Appl Environ Microbiol 69(1), 634–640 (2003)

    Article  CAS  Google Scholar 

  48. J. Scheiring, S.P. Andreoli, L.B. Zimmerhackl, Pediatr Nephrol 23(10), 1749–1760 (2008)

    Article  Google Scholar 

  49. Y. Feng, W. Xia, Carbohydr Polym 83(3), 1169–1173 (2011)

    Article  CAS  Google Scholar 

  50. K. Ström, J. Schnürer, P. Melin, FEMS Microbiol Lett 246(1), 119–124 (2005)

    Article  Google Scholar 

  51. V. Dieuleveux, S. Lemarinier, M. Gueguen, Int J Food Microbiol 40(3), 177–183 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science and Technology Support Program (Grant No. 2015BAD17B02-1), the Independent Innovation Major Project of Huangdao District Qingdao City (Grant No. 2014-3-11), and the National Natural Science Foundation of China (Grant No. 31371731).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfeng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Sun, X., Xu, Y. et al. Novel Antimicrobial and Antioxidant Chitosan Derivatives Prepared by Green Grafting with Phenyllactic Acid. Food Biophysics 12, 470–478 (2017). https://doi.org/10.1007/s11483-017-9503-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-017-9503-6

Keywords

Navigation