Skip to main content

Advertisement

Log in

Metabolomic Approaches to Defining the Role(s) of GABAρ Receptors in the Brain

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

The inhibitory neurotransmitter γ-aminobutyric acid (GABA) acts through various types of receptors in the central nervous system. GABAρ receptors, defined by their characteristic pharmacology and presence of ρ subunits in the channel structure, are poorly understood and their role in the cortex is ill-defined. Here, we used a targeted pharmacological, NMR-based functional metabolomic approach in Guinea pig brain cortical tissue slices to identify a distinct role for these receptors. We compared metabolic fingerprints generated by a range of ligands active at GABAρ and included these in a principal components analysis with a library of other metabolic fingerprints obtained using ligands active at GABAA and GABAB, with inhibitors of GABA uptake and with compounds acting to inhibit enzymes active in the GABAergic system. This enabled us to generate a metabolic “footprint” of the GABAergic system which revealed classes of metabolic activity associated with GABAρ which are distinct from other GABA receptors. Antagonised GABAρ produce large metabolic effects at extrasynaptic sites suggesting they may be involved in tonic inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alakuijala A, TalviOja K, Pasternack A, Pasternack M (2005) Functional characterization of rat ρ2 subunits expressed in HEK 293 cells. Eur J Neurosci 21:692–700

    Article  PubMed  Google Scholar 

  • Alakuijala A, Alakuijala J, Pasternack M (2006) Evidence for a functional role of GABAC receptors in the rat mature hippocampus. Eur J Neurosci 23:514–520

    Article  PubMed  Google Scholar 

  • Allan RD, Curtis DR, Headley PM, Johnston GAR, Lodge D, Twitchin B (1980) The synthesis and activity of cis- and trans-2-(aminomethyl) cyclopropanecarboxylic acid as conformationally restricted analogues of GABA. J Neurochem 34:652–654

    Article  CAS  PubMed  Google Scholar 

  • Barnard EA, Skolnick P, Olsen RW, Möhler H, Sieghart W, Biggio G, Braestrup C, Bateson AN, Langer SZ (1998) International union of pharmacology. XV. Subtypes of γaminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 50:291–313

    CAS  PubMed  Google Scholar 

  • Bolser DC, Blythin DJ, Chapman RW, Egan RW, Hey JA, Rizzo C, Kuo SC, Kreutner W (1995) The pharmacology of SCH-50911 - a novel, orally-active GABA-B receptor antagonist. J Pharmacol Exp Ther 274:1393–1398

    CAS  PubMed  Google Scholar 

  • Bormann J, Feigenspan A (1995) GABAC receptors. Trends Neurosci 18:515–519

    Article  CAS  PubMed  Google Scholar 

  • Boue-Grabot E, Roudbaraki M, Bascles L, Tramu G, Bloch B, Garret M (1998) Expression of GABA receptor ρ subunits in rat brain. J Neurochem 70:899–907

    Article  CAS  PubMed  Google Scholar 

  • Bowery NG, Bettler B, Froestl W, Gallagher JP, Marshall F, Raiteri M, Bonner TI, Enna SJ (2002) International union of pharmacology. XXXIII. Mammalian γ − aminobutyric acidB receptors: structure and function. Pharmacol Rev 54:247–264

    Article  CAS  PubMed  Google Scholar 

  • Bröer S, Bröer A, Hansen JT, Bubb WA, Balcar VJ, Nasrallah FA, Garner B, Rae C (2007) Alanine metabolism, transport and cycling in the brain. J Neurochem 102:1758–1770

    Article  PubMed  Google Scholar 

  • Carland JE, Moore AM, Hanrahan JR, Mewett KN, Duke RK, Johnston GAR, Chebib M (2004) Mutations of the 2′ proline in the M2 domain of the human GABA(C) rho 1 subunit alter agonist responses. Neuropharmacol 46:770–781

    Article  CAS  Google Scholar 

  • Carland JE, Johnston GAR, Chebib M (2008) Relative impact of residues at the intracellular and extracellular ends of the human GABA(C) rho 1 receptor M2 domain on picrotoxinin activity. Eur J Pharmacol 580:27–35

    Article  CAS  PubMed  Google Scholar 

  • Chebib M, Johnston GAR (1997) Stimulation of [3H]GABA and β − [3H]alanine release from rat brain slices by cis-4-aminocrotonic acid. J Neurochem 68:786–794

    Article  CAS  PubMed  Google Scholar 

  • Chebib M, Vandenberg RJ, Froestl W, Johnston GAR (1997) Unsaturated phosphinic analogues of γ-aminobutyric acid as GABAC receptor antagonists. Eur J Pharmacol 329:223–229

    Article  CAS  PubMed  Google Scholar 

  • Chebib M, Mewett KN, Johnston GAR (1998a) GABAC receptor antagonists differentiate between human ρ1 and ρ2 receptors expressed in Xenopus oocytes. Eur J Pharmacol 357:227–234

    Article  CAS  PubMed  Google Scholar 

  • Chebib M, Mewett KN, Johnston GAR (1998b) GABAC receptor antagonists differentiate between human [rho]1 and [rho]2 receptors expressed in Xenopus oocytes. Eur J Pharmacol 357:227–234

    Article  CAS  PubMed  Google Scholar 

  • Chebib M, Gavande N, Wong KY, Park A, Premoli I, Mewett KN, Allan RD, Duke RK, Johnston GAR, Hanrahan JR (2009a) Guanidino acids act as rho 1 GABA(C) receptor antagonists. Neurochem Res 34:1704–1711

    Article  CAS  PubMed  Google Scholar 

  • Chebib M, Hinton T, Schmid KL, Brinkworth D, Qian H, Matos S, Kim H, Abdel-Halim H, Kumar RJ, Johnston GAR, Hanrahan JR (2009b) Novel, potent and selective GABAC antagonists inhibit myopia development and improve memory. J Pharmacol Exp Therap 328: 448-457

  • Collingridge GL, Olsen RW, Peters J, Spedding M (2009) A nomenclature for ligand-gated ion channels. Neuropharmacol 56:2–5

    Article  CAS  Google Scholar 

  • Drew CA, Johnston GAR, Weatherby RP (1984) Bicuculline-insensitive GABA receptors: studies on the binding of (−)-baclofen to rat cerebellar membranes. Neurosci Lett 52:317–321

    Article  CAS  PubMed  Google Scholar 

  • Duke RK, Allan RD, Chebib M, Greenwood JR, Johnston GAR (1998) Resolution and conformational analysis of diastereomeric esters of cis and trans-2-(aminomethol)-1-carboxycyclopropanes. Tetrahedron Asymmetry 9:2533–2548

    Article  CAS  Google Scholar 

  • Duke RK, Chebib M, Balcar VJ, Allan RD, Mewett KN, Johnston GAR (2000) (+) and (−)-cis-2-Aminomethylcyclopropanecarboxylic acids show opposite pharmacology at recombinant ρ1 and ρ2 GABAC receptors. J Neurochem 75:2602–2610

    Article  CAS  PubMed  Google Scholar 

  • Ebert B, Thompson SA, Saounatsou K, McKernan R, Krogsgaard-Larsen P, Wafford KA (1997) Differences in agonist/antagonist binding affinity and receptor transduction using recombinant human gamma-aminobutyric acid type a receptors. Mol Pharmacol 52:1150–1156

    CAS  PubMed  Google Scholar 

  • Enz R, Cutting GR (1998) Molecular composition of GABAC receptors. Vis Res 38:1431–1441

    Article  CAS  PubMed  Google Scholar 

  • Enz R, Cutting GR (1999) GABAC receptor ρ subunits are heterogeneously expressed in the human CNS and form homo- and heterooligomers with distinct physical properties. Eur J Neurosci 11:41–50

    Article  CAS  PubMed  Google Scholar 

  • Enz R, Brandstätter JH, Hartveit E, Wässle H, Bormann J (1996) Expression of GABA receptor ρ1 and ρ2 subunits in the retina and brain of the rat. Eur J Neurosci 7:1495–1501

    Article  Google Scholar 

  • Eriksson L, Johansson E, Kettaneh-Wold N, Wold S (1999) Introduction to multi- and megavariate data analysis using projection methods (PCA and PLS). In. Umeå, Sweden: Umetrics

  • Froestl W, Gallagher M, Jenkins H, Madrid A, Melcher T, Teichman S, Mondadori CG, Pearlman R (2004) SGS742: the first GABAB receptor antagonist in clinical trials. Biochem Pharmacol 68:1479–1487

    Article  CAS  PubMed  Google Scholar 

  • Gibbs ME, Johnston GA (2005) Opposing roles for GABAA and GABAC receptors in short-term memory formation in young chicks. Neurosci 131:567–576

    Article  CAS  Google Scholar 

  • Hanrahan JR, Mewett KN, Chebib M, Matos S, Eliopoulos CT, Crean C, Kumar RJ, Burden P, Johnston GAR (2006) Diastereoselective synthesis of (+/−)-(3-aminocyclopentane)alkylphosphinic acids, conformationally restricted analogues of GABA. Org Biomol Chem 4:2642–2649

    Article  CAS  PubMed  Google Scholar 

  • Hartmann K, Stief F, Draguhn A, Frahm C (2004) Ionotropic GABA receptors with mixed pharmacological properties of GABAA and GABAC receptors. Eur J Pharmacol 497:139–146

    Article  CAS  PubMed  Google Scholar 

  • Harvey VL, Duguid IC, Cornelius K, Stephens GJ (2006) Evidence that GABA ρ subunits contribute to functional ionotropic GABA receptors in mouse cerebellar Purkinje cells. J Physiol 577:127–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnston GAR (1996) GABAC receptors: relatively simple transmitter-gated ion channels? Trends Pharmacol Sci 17:319–323

    Article  CAS  PubMed  Google Scholar 

  • Kapousta-Bruneau NV (2000) Opposite effects of GABAA and GABAC receptor antagonists on the B-wave of ERG recorded from the isolated rat retina. Vis Res 40:1653–1665

    Article  CAS  PubMed  Google Scholar 

  • Kato K (1990) Novel GABAA receptor alpha subunit is expressed only in cerebellar granule cells. J Mol Biol 214:619–624

    Article  CAS  PubMed  Google Scholar 

  • Kerr DIB, Ong J (1995) GABAB receptors. Pharmacol Ther 67:187–246

    Article  CAS  PubMed  Google Scholar 

  • Kumar RJ, Chebib M, Hibbs DE, Kim HL, Johnston GAR, Salam NK, Hanrahan JR (2008) Novel gamma-aminobutyric acid rho(1) receptor antagonists; synthesis, pharmacological activity and structure-activity relationships. J Med Chem 51:3825–3840

    Article  CAS  PubMed  Google Scholar 

  • Kusama T, Wang TL, Guggino WB, Cutting GR, Uhl GR (1993) GABA rho-2-receptor pharmacological profile - GABA recognition site similarities to rho-1. Eur J Pharmacol 245:83–84

    Article  CAS  PubMed  Google Scholar 

  • Lee BH, Choi SH, Hwang SH, Kim HJ, Lee JH, Nah SY (2013) Resveratrol inhibits GABAC rho receptor-mediated ion currents expressed in xenopus oocytes. Korean J Physiol Pharmacol : Off J Korean Physiol Soc Korean Soc Pharmacol 17:175–180

    Article  CAS  Google Scholar 

  • López-Chávez A, Miledi R, Martínez-Torres A (2005) Cloning and functional expression of the bovine GABAC ρ2 subunit. Molecular evidence of a widespread distribution in the CNS. Neurosci Res 53:421–427

    Article  PubMed  Google Scholar 

  • Matthews G, Ayoub GS, Heidelberger R (1994) Presynaptic inhibition by GABA is mediated via two distinct GABA receptors with novel pharmacology. J Neurosci 14:1079–1090

    CAS  PubMed  Google Scholar 

  • Milligan CJ, Buckley NJ, Garret M, Deuchars J, Deuchars SA (2004) Evidence for inhibition mediated by coassembly of GABAA and GABAC receptor subunits in native central neurons. J Neurosci 24:7241–7250

    Article  CAS  PubMed  Google Scholar 

  • Moussa CE-H, Rae C, Bubb WA, Griffin JL, Deters NA, Balcar VJ (2007) Inhibitors of glutamate transport modulate distinct patterns in brain metabolism. J Neurosci Res 85:342–350

    Article  CAS  PubMed  Google Scholar 

  • Murata Y, Woodward RM, Miledi R, Overman LE (1996) The first selective antagonist for a GABA(C) receptor. Bioorg Med Chem Lett 6:2073–2076

    Article  CAS  Google Scholar 

  • Nasrallah F, Griffin JL, Balcar VJ, Rae C (2007) Understanding your inhibitions. Modulation of brain cortical metabolism by GABA-B receptors. J Cereb Blood Flow Metab 27:1510–1520

    Article  CAS  PubMed  Google Scholar 

  • Nasrallah F, Griffin JL, Balcar VJ, Rae C (2009) Understanding your inhibitions. Effects of GABA and GABAA receptors on brain cortical metabolism. J Neurochem 108:57–71

    Article  CAS  PubMed  Google Scholar 

  • Nasrallah FA, Balcar VJ, Rae C (2010a) A metabonomic study of inhibition of GABA uptake in the cerebral cortex. Metabolomics 6:67–77

    Article  CAS  Google Scholar 

  • Nasrallah FA, Maher AD, Hanrahan JR, Balcar VJ, Rae CD (2010b) γ-Hydroxybutyrate and the GABAergic footprint. A metabolomic approach to unpicking the actions of GHB. J Neurochem 115:58–67

    Article  CAS  PubMed  Google Scholar 

  • Nasrallah FA, Balcar VJ, Rae CD (2011) Activity dependent GABA release controls brain cortical tissue slice metabolism. J Neurosci Res 89:1935–1945

    Article  CAS  PubMed  Google Scholar 

  • Neu A, Neuhoff H, Trube G, Fehr S, Ullrich K, Roeper J, Isbrandt D (2002) Activation of GABAA receptors by guanidinoacetate: a novel pathophysiological mechanism. Neurobiol Dis 11:298–307

    Article  CAS  PubMed  Google Scholar 

  • Pasternack M, Boller M, Pau B, Schmidt M (1999) GABAA and GABAC receptors have contrasting effects on excitability in superior colliculus. J Neurophysiol 82:2020–2023

    CAS  PubMed  Google Scholar 

  • Rae C, Balcar V (2014) A chip off the old block: the brain slice as a model for metabolic studies of brain compartmentation and neuropharmacology. In: Hirrlinger J, Waagepetersen HS (eds) Brain energy metabolism. Springer, New York, pp 217–241

    Google Scholar 

  • Rae C, Lawrance ML, Dias LS, Provis T, Bubb WA, Balcar VJ (2000) Strategies for studies of potentially neurotoxic mechanisms involving deficient transport of L-glutamate: antisense knockout in rat brain in vivo and changes in the neurotransmitter metabolism following inhibition of glutamate transport in guinea pigs brain slices. Brain Res Bull 53:373–381

    Article  CAS  PubMed  Google Scholar 

  • Rae C, Hare N, Bubb WA, McEwan SR, Bröer A, McQuillan JA, Balcar VJ, Conigrave AD, Bröer S (2003) Inhibition of glutamine transport depletes glutamate and GABA neurotransmitter pools: further evidence for metabolic compartmentation. J Neurochem 85:503–514

    Article  CAS  PubMed  Google Scholar 

  • Rae C, Moussa CE-H, Griffin JL, Bubb WA, Wallis T, Balcar VJ (2005) Group I and II metabotropic glutamate receptors alter brain cortical metabolic and glutamate/glutamine cycle activity: a 13C NMR spectroscopy and metabolomic study. J Neurochem 92:405–416

    Article  CAS  PubMed  Google Scholar 

  • Rae C, Moussa CE-H, Griffin JL, Parekh SB, Bubb WA, Hunt NH, Balcar VJ (2006) A metabolomic approach to ionotropic glutamate receptor subtype function: a nuclear magnetic resonance in vitro investigation. J Cereb Blood Flow Metab 26:1005–1017

    Article  CAS  PubMed  Google Scholar 

  • Rae C, Nasrallah FA, Griffin JL, Balcar VJ (2008) Understanding your inhibitions: neuropharmacological perturbations of GABAergic systems, metabolic outcomes and network correlations. Neuroimage 41:57

    Article  Google Scholar 

  • Rae C, Nasrallah FA, Griffin JL, Balcar VJ (2009) Now I know my ABC. A systems neurochemistry and functional metabolomic approach to understanding the GABAergic system. J Neurochem 109(Suppl 1):109–116

    Article  CAS  PubMed  Google Scholar 

  • Rae CD, Davidson JE, Maher AD, Rowlands BD, Kashem MA, Nasrallah FA, Rallipalli SK, Cook JM, Balcar VJ (2014) Ethanol, not detectably metabolized in brain, significantly reduces brain metabolism, probably via action at specific GABA(A) receptors and has measureable metabolic effects at very low concentrations. J Neurochem 129:304–314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ragozzino D, Woodward RM, Murata Y, Eusebi F, Overman LE, Miledi R (1996) Design and in vitro pharmacology of a selective γ − aminobutyric acidC receptor antagonist. Mol Pharmacol 50:1024–1030

    CAS  PubMed  Google Scholar 

  • Storustovu SI, Ebert B (2006) Pharmacological characterization of agonists at delta-containing GABA(A) receptors: functional selectivity for extrasynaptic receptors is dependent on the absence of gamma(2). J Pharmacol Exp Ther 316:1351–1359

    Article  CAS  PubMed  Google Scholar 

  • Vien J, Duke RK, Mewett KN, Johnston GA, Shingai R, Chebib M (2002) Trans-4-Amino-2-methylbut-2-enoic acid (2-MeTACA) and (+/−)-trans-2-aminomethylcyclopropanecarboxylic acid ((+/−)-TAMP) can differentiate rat rho3 from human rho1 and rho2 recombinant GABA(C) receptors. Br J Pharmacol 134:883–890

    Article  Google Scholar 

  • Wall MJ (2001) Cis-4-amino-crotonic acid activates [alpha]6 subunit-containing GABAA but not GABAC receptors in granule cells of adult rat cerebellar slices. Neurosci Lett 316:37–40

    Article  CAS  PubMed  Google Scholar 

  • Wegelius K, Pasternack M, Hiltunen JO, Rivera C, Kaila K, Saarma M, Reeben M (1998) Distribution of GABA receptor ρ subunit transcripts in the rat brain. Eur J Neurosci 10:350–357

    Article  CAS  PubMed  Google Scholar 

  • Wisden W, Laurie DJ, Monyer H, Seeburg PH (1992) The distribution of 13 GABA-A receptor subunit messenger-RNAs in the rat brain. 1. Telencephalon, Diencephalon, Mesencephalon. J Neurosci 12:1040–1062

    CAS  PubMed  Google Scholar 

  • Woodward RM, Polenzani L, Miledi R (1993) Characterization of bicuculline/baclofen-insensitive (rho-like) gamma- aminobutyric acid receptors expressed in Xenopus oocytes. II. Pharmacology of gamma-aminobutyric acidA and gamma-aminobutyric acidB receptor agonists and antagonists. Mol Pharmacol 43:609–625

    CAS  PubMed  Google Scholar 

  • Xu M, Covey DF, Akabas MH (1995) Interaction of picrotoxin with GABA(A) receptor channel-lining residues probed in cysteine mutants. Biophys J 69:1858–1867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr Jim Hook, Dr Adele Amoore and Dr Don Thomas of the UNSW Mark Wainwright Analytical Centre for expert technical assistance.

Funding

This work was supported by UNSW, NewSouth Global and the National Health and Medical Research Council of Australia (#568767 & 630516).

Conflict of Interest

CDR has received a speaker honorarium from Philips Healthcare. BDR, GARJ, VJB, FAN and JRH have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Rae.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rae, C., Nasrallah, F.A., Balcar, V.J. et al. Metabolomic Approaches to Defining the Role(s) of GABAρ Receptors in the Brain. J Neuroimmune Pharmacol 10, 445–456 (2015). https://doi.org/10.1007/s11481-014-9579-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-014-9579-4

Keywords

Navigation