Skip to main content
Log in

Full Color Angular Filtering of Visible Transmission in Tapered Plasmonic Metamaterial

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Flat nanophotonic devices hold a great potential to process diffractive optical information within ultra-thin submicron thickness. In particular, optical filtering of transmissive angular spectrum in the free space is an essential functionality in diffractive optics. Here, we propose a novel configuration and theoretical study of an ultrathin transmissive angular filtering metamaterial for the first time to the best of our knowledge. Based on the adiabatically tapered plasmonic waveguide metamaterial in the visible regime, full color angle-selective transmission is achieved near the optic axis including the representative blue (473 nm), green (532 nm), and red (633 nm) colors. By providing further analysis on bandwidth extension, we envision that the proposed flat angular filtering mechanism in the visible range promises practical value and potential for a variety of metamaterial-assisted compact diffractive imaging and sensing applications such as augmented or virtual reality displays and biomedical optical sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yu N, Capasso F (2014) Flat optics with designer metasurfaces. Nat Mater 13:139–150

    Article  CAS  Google Scholar 

  2. Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY, Capasso F (2016) Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352:1190–1194

    Article  CAS  Google Scholar 

  3. Arbabi A, Horie Y, Bagheri M, Faraon A (2015) Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotech 10:937–943

    Article  CAS  Google Scholar 

  4. Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, Gaburro Z (2011) Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334:333–337

    Article  CAS  Google Scholar 

  5. Jang C, Lee CK, Jeong J, Li G, Lee S, Yeom J, Hong K, Lee B (2016) Recent progress in see-through three-dimensional displays using holographic optical elements. Appl Opt 55:A71–A85

    Article  CAS  Google Scholar 

  6. Shen Y, Ye D, Celanovic I, Johnson SG, Joannopoulos JD, Soljačić M (2014) Optical broadband angular selectivity. Science 343:1499–1501

    Article  CAS  Google Scholar 

  7. Purlys V, Maigyte L, Gailevičius D, Peckus M, Malinauskas M, Gadonas R, Staliunas K (2014) Spatial filtering by axisymmetric photonic microstructures. Opt Lett 39:929–932

    Article  CAS  Google Scholar 

  8. Purlys V, Maigyte L, Gailevičius D, Peckus M, Malinauskas M, Staliunas K (2013) Spatial filtering by chirped photonic crystals. Phys Rev A 87:033805

    Article  Google Scholar 

  9. Iizuka H, Engheta N, Sugiura S (2016) Extremely small wavevector regime in a one-dimensional photonic crystal heterostructure for angular transmission filtering. Opt Lett 41:3829–3832

    Article  CAS  Google Scholar 

  10. Alekseyev LV, Narimanov EE, Tumkur T, Li H, Barnakov YA, Noginov MA (2010) Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control. Appl Phys Lett 97:131107

    Article  Google Scholar 

  11. Moitra P, Yang Y, Anderson Z, Kravchenko II, Briggs DP, Valentine J (2013) Realization of an all-dielectric zero-index optical metamaterial. Nat Photonics 7:791–795

    Article  CAS  Google Scholar 

  12. Kim H, Lee B (2009) Unidirectional surface plasmon polariton excitation on single slit with oblique backside illumination. Plasmonics 4:153–159

    Article  Google Scholar 

  13. Wang CM, Yu CJ (2013) Free-space plasmonic filter with dual-resonance wavelength using asymmetric T-shaped metallic array. Plasmonics 8:385–390

    Article  CAS  Google Scholar 

  14. Heer JM, Coe JV (2012) 3D-FDTD modeling of angular spread for the extraordinary transmission spectra of metal films with arrays of subwavelength holes. Plasmonics 7:71–75

    Article  CAS  Google Scholar 

  15. Kim H, Lee B (2006) Geometric optics analysis on light transmission and reflection characteristics of metallic prism sheets. Opt Eng 45:084004

    Article  Google Scholar 

  16. Stockman MI (2004) Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett 93:137404

    Article  Google Scholar 

  17. Søndergaard T, Novikov SM, Holmgaard T, Eriksen RL, Beermann J, Han Z, Pedersen K, Bozhevolnyi SI (2012) Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves. Nat Commun 3:969

    Article  Google Scholar 

  18. Fountaine KT, Cheng WH, Bukowsky CR, Atwater HA (2016) Near-unity unselective absorption in sparse InP nanowire arrays. ACS Photonics 3:1826–1832

    Article  CAS  Google Scholar 

  19. Dionne JA, Sweatlock LA, Atwater HA, Polman A (2006) Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys Rev B 73:035407

    Article  Google Scholar 

  20. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York, New York

    Book  Google Scholar 

  21. Park J, Kim KY, Lee IM, Na H, Lee SY, Lee B (2010) Trapping light in plasmonic waveguides. Opt Express 18:598–623

    Article  CAS  Google Scholar 

  22. Kim SJ, Mun SE, Lee Y, Park H, Hong J, Lee B (2018) Nanofocusing of toroidal dipole for simultaneously enhanced electric and magnetic fields using plasmonic waveguide. J Light Technol 36:1882–1889

    Article  CAS  Google Scholar 

  23. Kim SJ, Yoo S, Lee K, Kim J, Lee Y, Lee B (2017) Critical nanofocusing of magnetic dipole moment using a closed plasmonic tip. Opt Express 25:14077–14088

    Article  CAS  Google Scholar 

  24. Palik ED (1998) Handbook of optical constants of solids. Academic press, Orlando

    Google Scholar 

  25. Malitson IH (1965) Interspecimen comparison of the refractive index of fused silica. J Opt Soc Am 55:1205–1208

    Article  CAS  Google Scholar 

  26. Harvey JE, Pfisterer RN (2019) Understanding diffraction grating behavior: including conical diffraction and Rayleigh anomalies from transmission gratings. Opt Eng 58:087105

    Article  Google Scholar 

  27. Vengurlekar AS (2008) Optical properties of metallo-dielectric deep trench gratings: role of surface plasmons and Wood-Rayleigh anomaly. Opt Lett 33:1669–1671

    Article  Google Scholar 

  28. Jang MS, Atwater H (2011) Plasmonic rainbow trapping structures for light localization and spectrum splitting. Phys Rev Lett 107:207401

    Article  Google Scholar 

  29. Chang C, Sakdinawat A (2014) Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics. Nat Commun 5:4243

    Article  CAS  Google Scholar 

  30. Li H, Ye T, Shi L, Xie C (2017) Fabrication of ultra-high aspect ratio (> 160: 1) silicon nanostructures by using Au metal assisted chemical etching. J Micromech Microeng 27:124002

    Article  Google Scholar 

  31. Lee GY, Sung J, Lee B (2020) Metasurface optics for imaging applications. MRS Bulletin 45:202–209

    Article  Google Scholar 

  32. Lee Y, Kim SJ, Park H, Lee B (2017) Metamaterials and metasurfaces for sensor applications. Sensors 17:1726

    Article  Google Scholar 

  33. Ko WS, Tran TTD, Bhattacharya I, Ng KW, Sun H, Chang-Hasnain C (2015) Illumination angle insensitive single indium phosphide tapered nanopillar solar cell. Nano Lett 15:4961–4967

    Article  CAS  Google Scholar 

  34. Park JH, Ambwani P, Manno M, Lindquist NC, Nagpal P, Oh SH, Leighton C, Norris DJ (2012) Single crystalline silver films for plasmonics. Adv Mater 24:3988–3992

    Article  CAS  Google Scholar 

  35. High AA, Devlin RC, Dibos A, Polking M, Wild DS, Perczel J, Leon NP, Lukin MD, Park H (2015) Visible-frequency hyperbolic metasurface. Nature 522:192–196

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge support from the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (No. 2020R1A2B5B02002730) and the BK21 Plus Project in 2020.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Author information

Authors and Affiliations

Authors

Contributions

S.-J. K. conceived the ideas, conducted theoretical and numerical studies, and prepared the draft of the paper. J. H., S. M., and J.-G. Y. helped the analysis on the results. B. L. initiated and supervised the whole project. All authors participated in preparation of the final version of the manuscript.

Corresponding author

Correspondence to Byoungho Lee.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SJ., Hong, J., Moon, S. et al. Full Color Angular Filtering of Visible Transmission in Tapered Plasmonic Metamaterial. Plasmonics 16, 115–121 (2021). https://doi.org/10.1007/s11468-020-01263-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01263-y

Keywords

Navigation