Skip to main content
Log in

Tailoring of Localized Surface Plasmon Resonances of Core-Shell Au@Ag Nanorods by Changing the Thickness of Ag Shell

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We report the synthesis and the characterization of core-shell Au@Ag nanorods through reduction by the wet chemical method. UV-visible absorption spectra of core-shell Au@Ag nanorods demonstrate the longitudinal mode of localized surface plasmon resonances (LSPRs) can be tailored from 724 to 786 nm by controlling the thickness of the silver shell, as is assessed by transmission electron microscope (TEM). Furthermore, the tunable and well-controlled LSPRs of core-shell Au@Ag nanorods are also investigated by numerical simulation using the finite difference time domain (FDTD) method, which strongly supports the experimental observations. The growth mechanism for core-shell Au@Ag nanorods is proposed, according to experimental observations and numerical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Halas NJ, Lal S, Chang WS, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3961

    Article  CAS  Google Scholar 

  2. Chen Y, Wu H, Li Z, Wang P, Yang L, Fang Y (2012) The study of surface plasmon in Au/Ag core/shell compound nanoparticles. Plasmonics 7:509–513

    Article  CAS  Google Scholar 

  3. Hou S, Hu XN, Wen T, Liu WQ, Wu XC (2013) Core-shell noble metal nanostructures templated by gold nanorods. Adv Mater 25:3857–3862

    Article  CAS  Google Scholar 

  4. Nan F, Liang S, Wang JH, Liu XL, Yang DJ, Yu XF, Zhou L, Hao ZH, Wang QQ (2014) Tunable plasmon enhancement of gold/semiconductor core/shell hetero-nanorods with site-selectively grown shell. Adv Optical Mater 2:679–686

    Article  CAS  Google Scholar 

  5. Wang PJ, Liu MY, Gao GL, Zhang SP, Shi HL, Li ZP, Zhang LS, Fang Y (2012) From gold nanorods to nanodumbbells: a different way to tailor surface plasmon resonances by a chemical route. J Mater Chem 22:24006–24011

    Article  CAS  Google Scholar 

  6. Farrer RA, Butterfield FL, Chen VW, Fourkas JT (2005) Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticle. Nano Lett 5:1139–11425

    Article  CAS  Google Scholar 

  7. Liu S, Li J, Li ZY (2013) Macroscopic polarized emission from aligned hybrid gold nanorods embedded in a polyvinyl alcohol film. Adv Optical Mater 1:227–231

    Article  Google Scholar 

  8. Ming T, Zhao L, Yang Z, Chen HJ, Sun LD, Wang JF, Yan CH (2009) Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. Nano Lett 9:3896–3903

    Article  CAS  Google Scholar 

  9. Xu HX, Bjerneld EJ, Käll M, Börjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83:4357–4360

    Article  CAS  Google Scholar 

  10. Peng B, Li GY, Li DH, Dodson S, Zhang Q, Zhang J, Lee YH, Demir HV, Ling XY, Xiong QH (2013) Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants. ACS Nano 7:5993–6000

    Article  CAS  Google Scholar 

  11. Sudeep PK, Joseph STS, Thomas KG (2005) Selective detection of cysteine and glutathione using gold nanorods. J Am Chem Soc 127:6516–6517

    Article  CAS  Google Scholar 

  12. Liu X, Dai Q, Austin L, Coutts J, Knowles G, Zou JH, Chen H, Huo QA (2008) One-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J Am Chem Soc 130:2780–2782

    Article  CAS  Google Scholar 

  13. Wang JH, Wang B, Liu Q, Li Q, Huang H, Song L, Sun TY, Wang HY, Yu XF, Li CZ, Chu PK (2013) Bimodal optical diagnostics of oral cancer based on Rose Bengal conjugated gold nanorod platform. Biomaterials 34:4274–4283

    Article  CAS  Google Scholar 

  14. Durr NJ, Larson T, Smith DK, Korgel BA, Sokolov K, Ben-Yakar A (2007) Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 7:941–945

    Article  CAS  Google Scholar 

  15. Huang XH, El-Sayed IH, Qian W, El-Sayed MA (2007) Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. Nano Lett 7:1591–1597

    Article  CAS  Google Scholar 

  16. Norman RS, Stone JW, Gole A, Murphy CJ, Sabo-Attwood TL (2008) targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods. Nano Lett 8:302–306

    Article  CAS  Google Scholar 

  17. Xiang YJ, Wu XC, Liu DF, Li ZY, Chu WG, Feng LL, Zhang K, Zhou WY, Xie SS (2008) Gold nanorod-seeded growth of silver nanostructures: from homogeneous coating to anisotropic coating. Langmuir 24:3465–3470

    Article  CAS  Google Scholar 

  18. Okuno Y, Nishioka K, Kiya A, Nakashima N, Ishibashi A, Niidome Y (2010) Uniform and controllable preparation of Au-Ag core-shell nanorods using anisotropic silver shell formation on gold nanorods. Nanoscale 2:1489–1493

    Article  CAS  Google Scholar 

  19. Zhang X, Wang P, Zhang Z, Fang Y, Sun M (2014) Plasmon-driven sequential chemical reactions in an aqueous environment. Sci Rep 4:5407–5414

    CAS  Google Scholar 

  20. Cui L, Wang P, Chen X, Fang Y, Zhang Z, Sun M (2014) Plasmon-driven dimerization via S-S chemical bond in an aqueous environment. Sci Rep 4:7221–7227

    Article  CAS  Google Scholar 

  21. Liu MZ, Guyot-Sionnest P (2004) Synthesis and optical characterization of Au/Ag core/shell nanorods. J Phys Chem B 108:5882–5888

    Article  CAS  Google Scholar 

  22. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067

    Article  CAS  Google Scholar 

  23. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This project is supported by the National Natural Science Foundation of China (No. 21473115), National Youth Foundation of China (grant no. 11204189), Scientific Research Base Development Program of the Beijing Municipal Commission of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijie Wang.

Additional information

The co-first authors are Lisheng Zhang and Feng Zhao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhao, F., Li, Z. et al. Tailoring of Localized Surface Plasmon Resonances of Core-Shell Au@Ag Nanorods by Changing the Thickness of Ag Shell. Plasmonics 11, 1511–1517 (2016). https://doi.org/10.1007/s11468-016-0204-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0204-7

Keywords

Navigation