Skip to main content
Log in

Broadband Optical Response in Ternary Tree Fractal Plasmonic Nanoantenna

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The ability to precisely tailor lineshapes, operational bandwidth, and localized electromagnetic field enhancements (“hot spots”) in nanostructures is currently of interest in advancing the performance of plasmonics-based chemical and biological sensing techniques. Fractal geometries are an intriguing alternative in the design of plasmonic nanostructures as they offer tunable multiband response spanning the visible and infrared spectral regions. A numerical study of the optical behavior of ternary tree fractal plasmonic nanoantenna is presented. Self-similar features are seen to emerge in the extinction spectra with the increase in fractal order N of the tree structure. Plasmon oscillations occurring at different length scales are shown to correspond to the multiple peaks and are compared with the spatial maps of electric field enhancement at the surface of the nanoantenna. The multiple peaks are shown to be independently tunable by structural variation. The robustness of the spectral response and polarization dependence arising due to various asymmetries is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Maier SA (2007) Plasmonics: fundamentals and applications. Springer

  2. Ciraci C, Hill RT, Mock JJ, Urzhumov Y, Fernandez-Dominguez aI, Maier Sa, Pendry JB, Chilkoti A, Smith DR (2012) Probing the ultimate limits of plasmonic enhancement. Science 337(6098):1072–1074

    Article  CAS  Google Scholar 

  3. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453

    Article  CAS  Google Scholar 

  4. Moskovic M, Kneipp K (2006) Surface-enhanced raman scattering physics and applications. Springer

  5. Jackson JB, Halas NJ (2004) Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates. Proc Natl Acad Sci U S A 101(52):17,930–17,935

    Article  CAS  Google Scholar 

  6. Kundu J, Le F, Nordlander P, Halas NJ (2008) Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates. Chem Phys Lett 452(1-3):115–119

    Article  CAS  Google Scholar 

  7. Scalora M, Vincenti MA, de Ceglia D, Roppo V, Centini M, Akozbek N, Bloemer MJ (2010) Second and third harmonic generation in metal-based nanostructures. Phys Rev A 82:043828

    Article  Google Scholar 

  8. Song Z, Zhang B (2014) Wide-angle polarization-insensitive transparency of a continuous opaque metal film for near- infrared light. Opt Exp 22(6):6519–6525

    Article  Google Scholar 

  9. Song Z, He Q, Xiao S, Zhou L (2012) Making a continuous metal film transparent via scattering cancellations. Appl Phys Lett 101(18):1–5

    Article  Google Scholar 

  10. Gallinet B, Martin OJF (2011) Influence of electromagnetic interactions on the line shape of plasmonic fano resonances. ACS Nano 5(11):8999–9008

    Article  CAS  Google Scholar 

  11. Becker J, Trügler A, Jakab A, Hohenester U, Sönnichsen C (2010) The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5(2):161–167

    Article  CAS  Google Scholar 

  12. Hegde RS, Mesch M, Giessen H (2014) Perturbation theory for the optimal design of plasmon induced transparency based sensors. In: META’15, Fifth International Conference on Metamaterials, Photonic Crystals and Plasmonics, Singapore

  13. Liu Y, Pedireddy S, Lee YH, Hegde RS, Tjiu WW, Cui Y, Ling XY (2014) Precision synthesis: designing hot spots over hot spots via selective gold deposition on silver octahedra edges. Small 10(23):4940–4950

    Article  CAS  Google Scholar 

  14. Gottheim S, Zhang H, Govorov AO, Halas NJ (2015) Fractal nanoparticle plasmonics: the Cayley Tree. ACS Nano (August):150310091547, 007

  15. Luk’yanchuk B, Zheludev NI, Maier Sa, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9(9):707–715

    Article  Google Scholar 

  16. Brolo AG, Gordon R, Leathem B, Kavanagh KL (2004) Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir : The ACS Journal of Surfaces and Colloids 20(12):4813–4815

    Article  CAS  Google Scholar 

  17. Hayashi S (1985) SERS on random rough silver surfaces: evidence of surface plasmon excitation and the enhancement factor for copper phthalocyanine. Surf Sci 158(1-3):229–237

    Article  CAS  Google Scholar 

  18. Luchowski R, Shtoyko T, Matveeva E, Sarkar P, Borejdo J, Gryczynski Z, Gryczynski I (2010) Molecular fluorescence enhancement on fractal-like structures. Appl Spectrosc 64(6):578–583

    Article  CAS  Google Scholar 

  19. Dong J, Qu S, Zheng H, Zhang Z, Li J, Huo Y, Li G (2014) Simultaneous SEF and SERRS from silver fractal-like nanostructure. Sens Actuators B Chem 191:595–599

    Article  CAS  Google Scholar 

  20. Stockman MI, Shalaev VM, Moskovits M, Botet R, George TF (1992) Enhanced {Raman} scattering by fractal clusters: scale invariant theory. Phys Rev B 46:2821–2830

    Article  Google Scholar 

  21. Werner DH, Haupt RL, Werner PL (1999) Fractal antenna engineering: the theory and design of fractal antenna arrays. IEEE Antennas Propag Mag 41(5):37–59

    Article  Google Scholar 

  22. Zhou L, Chan CT, Sheng P (2004) Theoretical studies on the transmission and reflection properties of metallic planar fractals. J Phys D Appl Phys 37(3):368–373

    Article  CAS  Google Scholar 

  23. Wen W, Zhou L, Li J, Ge W, Chan CT, Sheng P (2002) Subwavelength photonic band gaps from planar fractals. Physical review letters 89(22):223,901

    Article  Google Scholar 

  24. Sederberg S, Elezzabi AY (2011) Sierpiski fractal plasmonic antenna: a fractal abstraction of the plasmonic bowtie antenna. Opt Express 19(11):10,456–10,461

    Article  Google Scholar 

  25. Chen Y, Zhan L, Wu J, Wang T (2014) Polarization anisotropic transmission through metallic Sierpinski-Carpet aperture array. Opt Express 22(3):2222

    Article  Google Scholar 

  26. Volpe G, Volpe G, Quidant R (2011) Fractal plasmonics: subdiffraction focusing and broadband spectral response by a Sierpinski nanocarpet. Opt Express 19(4):3612–3618

    Article  CAS  Google Scholar 

  27. Chen TL, Dikken DJ, Prangsma JC, Segerink F, Herek JL (2014) Characterization of Sierpinski carpet optical antenna at visible and near-infrared wavelengths. New J Phys 16(9):093,024

    Article  Google Scholar 

  28. Zhu LH, Shao MR, Peng RW, Fan RH, Huang XR, Wang M (2013) Broadband absorption and efficiency enhancement of an ultra-thin silicon solar cell with a plasmonic fractal. Opt Express 21 Suppl 3 (May):A313—23

    Google Scholar 

  29. Nagatani T (1989) Growth model with phase transition: drift-diffusion-limited aggregation. Phys Rev A 39:438–441

    Article  Google Scholar 

  30. Johnson PB, Christy RW, Johnson PB, Christy RW (1972) Optical constants of the noble metals

  31. Kuttge M, García De Abajo FJ, Polman A (2010) Ultrasmall mode volume plasmonic nanodisk resonators. Nano Lett 10(5):1537–1541

    Article  CAS  Google Scholar 

  32. Willingham B, Brandl DW, Nordlander P (2008) Plasmon hybridization in nanorod dimers. Appl Phys B Lasers Opt 93(1):209–216

    Article  CAS  Google Scholar 

  33. Funston AM, Novo C, Davis TJ, Mulvaney P (2009) Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett 9(4):1651–1658

    Article  CAS  Google Scholar 

  34. Knight MW, Wu Y, Lassiter JB, Nordlander P, Halas NJ (2009) Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. Nano Lett 9(5):2188–2192

    Article  CAS  Google Scholar 

  35. Powell DA, Kivshar YS (2010) Substrate-induced bianisotropy in metamaterials. Appl Phys Lett 97:091106

    Article  Google Scholar 

  36. Zhang S, Bao K, Halas NJ, Xu H, Nordlander P (2011) Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11(4):1657–1663

    Article  CAS  Google Scholar 

  37. Cui Y, Phang IY, Hegde RS, Lee YH, Ling XY (2014) Plasmonic silver nanowire structures for two-dimensional multiple-digit molecular data storage application. ACS Photon 1(7):631–637

    Article  CAS  Google Scholar 

  38. Cui Y, Hegde RS, Phang IY, Lee HK, Ling XY (2014) Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications. Nanoscale 6(1):282–288

    Article  CAS  Google Scholar 

  39. Maier SA (2006) Plasmonic field enhancement and SERS in the effective mode volume picture. Opt Express 14(5):1957–1964

    Article  Google Scholar 

  40. Agrawal A, Matsui T, Zhu W, Nahata A, Vardeny ZV (2009) Terahertz spectroscopy of plasmonic fractals. Phys Rev Lett 102:113,901

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi S. Hegde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegde, R.S., Khoo, E.H. Broadband Optical Response in Ternary Tree Fractal Plasmonic Nanoantenna. Plasmonics 11, 465–473 (2016). https://doi.org/10.1007/s11468-015-0059-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0059-3

Keywords

Navigation