Skip to main content
Log in

Plasmonic Switching in Au-Functionalized GaN Nanowires in the Realm of Surface Plasmon Polariton Propagation: a Single Nanowire Switching Device

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Photoresponse of Au nanoparticle functionalized semiconducting GaN (Au-GaN) nanowires is reported for an optical switching using 532 excitation. Wide band gap GaN nanowires are grown by catalyst-assisted chemical vapor deposition technique and functionalized with Au in the chemical route. Au-GaN nanowires show surface plasmon resonance (SPR) mode of Au nanoclusters around 550 nm along with characteristic band for GaN around 365 nm. An optical switching is observed for Au-GaN nanowires with a sub-band gap excitation of 532 nm suggesting possible role of surface plasmon polariton-assisted transport of electron in the system. The role of band conduction is ruled out in the absence of optical switching using 325-nm excitation which is higher in energy that the reported band gap of GaN ∼3.4 eV (365 nm) at room temperature. A finite amount of interband contribution of Au plays an important role along with the interparticle separation. The switching device is also successfully tested for a single GaN nanowire functionalized with Au nanoclusters. A resistivity value of 0.05 Ω-cm is measured for surface plasmon polariton-assisted electrical transport of carrier in the single GaN nanowire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  Google Scholar 

  2. Polman A (2008) Plasmonics applied. Science 322:868–869

    Article  Google Scholar 

  3. Hu MS, Chen HL, Shen CH, Hong S, Huang BR, Chen KH, Chen LC (2006) Photosensitive gold-nanoparticle-embedded dielectric nanowires. Nat Mater 5:102–106

    Article  CAS  Google Scholar 

  4. Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AAG (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2:229–232

    Article  CAS  Google Scholar 

  5. Andrew P, Barnes WL (2004) Energy transfer across a metal film mediated by surface plasmon polaritons. Science 306:1002–1005

    Article  CAS  Google Scholar 

  6. Kim S, Jin J, Kim Y-J, Park I-Y, Kim Y, Kim S-W (2008) High-harmonic generation by resonant plasmon field enhancement. Nature 453:757–760

    Article  CAS  Google Scholar 

  7. McMahon MD, Lopez R, Haglund RF Jr, Ray EA, Bunton PH (2006) Second-harmonic generation from arrays of symmetric gold nanoparticles. Phys Rev B 73:041401

    Article  Google Scholar 

  8. Hubert C, Billot L, Adam P-M, Bachelot R, Royer P, Grand J, Gindre D, Dorkenoo KD, Fort A (2007) Surface plasmon spectral characteristics of second harmonic generation in gold nanorods. Appl Phys Lett 90:181105

    Article  Google Scholar 

  9. Chen P, Zhou X, Andoy NM, Han K-S, Choudhary E, Zou N, Chen G, Shen H (2014) Spatiotemporal catalytic dynamics within single nanocatalysts revealed by single-molecule microscopy. Chem Soc Rev 14:1107–1117

    Article  Google Scholar 

  10. Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C, Chen LG, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang JL, Hou JG (2013) Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498:82–86

    Article  CAS  Google Scholar 

  11. Sonnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23:741–745

    Article  Google Scholar 

  12. Bouhelier A, Bachelot R, Lerondel G, Kostcheev S, Royer P, Wiederrecht GP (2005) Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. Phys Rev Lett 95:267405

    Article  CAS  Google Scholar 

  13. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  14. Chen C-P, Ganguly A, Wang C-H, Hsu C-W, Chattopadhyay S, Hsu Y-K, Chang Y-C, Chen K-H, Chen L-C (2009) Label-free dual sensing of DNA molecules using GaN nanowires. Anal Chem 81:36–42

    Article  CAS  Google Scholar 

  15. Dhara S, Sundaravel B, Ravindran TR, Nair KGM, David C, Panigrahi BK, Magudapathy P, Chen KH (2004) ‘Spillout’ effect in gold nanoclusters embedded in c-Al2O3(0001) matrix. Chem Phys Lett 399:354–356

    Article  CAS  Google Scholar 

  16. Grzegorczyk AP, Macht L, Hageman PR, Rudzinski M, Larsen PK (2005) Resistivity control of unintentionally doped GaN films. Phys Stat Sol C 2:2113–2116

    Article  CAS  Google Scholar 

  17. Ham M-H, Choi J-H, Hwang W, Park C, Lee W-Y, Myoung J-M (2006) Contact characteristics in GaN nanowire devices. Nanotechnology 17:2203–2206

    Article  CAS  Google Scholar 

  18. Bouhelier A, Beversluis M, Hartschuh A, Novotny L (2003) Near-field second-harmonic generation induced by local field enhancement. Phys Rev Lett 90:013903

    Article  CAS  Google Scholar 

  19. Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98:011101

    Article  Google Scholar 

  20. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  21. Wei Q, McLeod E, Qi H, Wan Z, Sun R, Ozcan A (2013) On-chip cytometry using plasmonic nanoparticle enhanced lensfree holography. Sci Rep 3:2045–2322

    Google Scholar 

Download references

Acknowledgments

We thank C. P. Chen, A. Ganguly, C. W. Hsu, and C. T. Wu of CCMS, Taiwan for their contribution in performing the experiments. We are greatly in debt to L. C. Chen of CCMS, Taiwan for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sandip Dhara or Kuei-Hsien Chen.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

(DOCX 703 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhara, S., Lu, CY. & Chen, KH. Plasmonic Switching in Au-Functionalized GaN Nanowires in the Realm of Surface Plasmon Polariton Propagation: a Single Nanowire Switching Device. Plasmonics 10, 347–350 (2015). https://doi.org/10.1007/s11468-014-9815-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9815-z

Keywords

Navigation