Skip to main content
Log in

Topological quantum walks: Theory and experiments

  • View & Perspective
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. C. H. Li, O. M. J. van’t Erve, J. T. Robinson, Y. Liu, L. Li, and B. T. Jonker, Electrical detection of charge-current-induced spin polarization due to spin-momentum locking in Bi2Se3, Nat. Nanotechnol. 9(3), 218 (2014)

    Article  ADS  Google Scholar 

  2. Y. Ando, T. Hamasaki, T. Kurokawa, K. Ichiba, F. Yang, M. Novak, S. Sasaki, K. Segawa, Y. Ando, and M. Shiraislii, Electrical detection of the spin polarization due to charge flow in the surface state of the topological insulator Bi1.5Sb0.5Te1.7Se1 .3, Nano Lett. 14(11), 6226 (2014)

    Article  ADS  Google Scholar 

  3. D. C. Mahendra, R. Grassi, J.-Y. Chen, M. Jamali, D. R. Hickey, D. Zhang, Z. Zhao, H. Li, P. Quarterman, Y. Lv, M. Li, A. Manchon, K. A. Mkhoyan, T. Low, and J.-P. Wang, Room-temperature high spin-orbit torque due to quantum confinement in sputtered BixSe1-x; films, Nat. Mater. 17, 800 (2018)

    Article  ADS  Google Scholar 

  4. A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303(1), 2 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. T. Kitagawa, M. S. Rudner, E. Berg, and E. Demler, Exploring topological phases with quantum walks, Phys. Rev. A 82(3), 033429 (2010)

    Article  ADS  Google Scholar 

  6. T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Topological characterization of periodically driven quantum systems, Phys. Rev. B 82(23), 235114 (2010)

    Article  ADS  Google Scholar 

  7. T. Kitagawa, M. A. Broome, A. Fedrizzi, M. S. Rudner, E. Berg, I. Kassal, A. Aspuru-Guzik, E. Demler, and A. G. White, Observation of topologically protected bound states in photonic quantum walks, Nat. Commun. 3(1), 882 (2012)

    Article  ADS  Google Scholar 

  8. J. K. Asboth, Symmetries, topological phases, and bound states in the one-dimensional quantum walk, Phys. Rev. B 86, 195414 (2012)

    Article  ADS  Google Scholar 

  9. M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin, Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems, Phys. Rev. X 3(3), 031005 (2013)

    Google Scholar 

  10. W. W. Zhang, B. C. Sanders, S. Apers, S. K. Goyal, and D. L. Feder, Detecting topological transitions in two dimensions by Hamiltonian evolution, Phys. Rev. Lett. 119(19), 197401 (2017)

    Article  ADS  Google Scholar 

  11. L. Xiao, X. Zhan, Z. H. Bian, K. K. Wang, X. Zhang, X. P. Wang, J. Li, K. Mochizuki, D. Kim, N. Kawakami, W. Yi, H. Obuse, B. C. Sanders, and P. Xue, Observation of topological edge states in parity-time-symmetric quantum walks, Nat. Phys. 13(11), 1117 (2017)

    Article  Google Scholar 

  12. C. Chen, X. Ding, J. Qin, Y. He, Y. H. Luo, M. C. Chen, C. Liu, X. L. Wang, W. J. Zhang, H. Li, L. X. You, Z. Wang, D. W. Wang, B. C. Sanders, C. Y. Lu, and J. W. Pan, Observation of topologically protected edge states in a photonic two-dimensional quantum walk, Phys. Rev. Lett. 121(10), 100502 (2018)

    Article  ADS  Google Scholar 

  13. W. Sun, C. R. Yi, B. Z. Wang, W. W. Zhang, B. C. Sanders, X. T. Xu, Z. Y. Wang, J. Schmiedmayer, Y. Deng, X. J. Liu, S. Chen, and J. W. Pan, Uncover topology by quantum quench dynamics, Phys. Rev. Lett. 121(25), 250403 (2018)

    Article  ADS  Google Scholar 

  14. M. Sajid, J. K. Asboth, D. Meschede, R. F. Werner, and A. Alberti, Creating anomalous Floquet Chern insulators with magnetic quantum walks, Phys. Rev. B 99(21), 214303 (2019)

    Article  ADS  Google Scholar 

  15. J. Kempe, Quantum random walks: An introductory overview, Contemp. Phys. 44(4), 307 (2003)

    Article  ADS  Google Scholar 

  16. Y. Aharonov, L. Davidovich, and N. Zagury, Quantum random walks, Phys. Rev. A 48(2), 1687 (1993)

    Article  ADS  Google Scholar 

  17. D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani, in: Proc. 33rd Annual ACM Symposium on Theory of Computing, ACM, New York, 2001, pp 50–59

    MATH  Google Scholar 

  18. A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous, in: Proc. 33rd Annual ACM Symposium on Theory of Computing, ACM, New York, 2001, pp 37–49

    Google Scholar 

  19. T. D. Mackay, S. D. Bartlett, L. T. Stephenson, and B. C. Sanders, Quantum walks in higher dimensions, J. Phys. A 35(12), 2745 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman, in: Proc. 35th Annual ACM Symposium on Theory of Computing, ACM, New York, 2003, pp 59–68

    Google Scholar 

  21. A. Ambainis, Quantum walk algorithm for element distinctness, SIAM J. Corn-put. 37(1), 210 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. F. Magniez, M. Santha, and M. Szegedy, Quantum algorithms for the triangle problem, SIAM J. Comput. 37(2), 413 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. E. Farhi, J. Goldstone, and S. Gutmann, A quantum algorithm for the Hamiltonian NAND tree, Theory Comput. 4(1), 169 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. B. L. Douglas, and J. Wang, A classical approach to the graph isomorphism problem using quantum walks, J. Phys. A 41(7), 075303 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. A. M. Childs, Universal computation by quantum walk, Phys. Rev. Lett. 102(18), 180501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  26. S. Godoy and S. Fujita, A quantum random-walk model for tunneling diffusion in a 1D lattice: A quantum correction to Fick’s law, J. Chem. Phys. 97(7), 5148 (1992)

    Article  ADS  Google Scholar 

  27. O. Mülken and A. Blumen, Continuous-time quantum walks: Models for coherent transport on complex networks, Phys. Rep. 502(2), 37 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  28. G. Di Molfetta, M. Brachet, and F. Debbasch, Quantum walks as massless Dirac fermions in curved space-time, Phys. Rev. A 88(4), 042301 (2013)

    Article  ADS  Google Scholar 

  29. W. W. Zhang, S. K. Goyal, F. Gao, B. C. Sanders, and C. Simon, Creating cat states in one-dimensional quantum walks using delocalized initial states, New J. Phys. 18(9), 093025 (2016)

    Article  ADS  Google Scholar 

  30. H. Schmitz, R. Matjeschk, C. Schneider, J. Glueckert, M. Enderlein, T. Huber, and T. Schaetz, Quantum walk of a trapped ion in phase space, Phys. Rev. Lett. 103(9), 090504 (2009)

    Article  ADS  Google Scholar 

  31. F. Zahringer, G. Kirchmair, R. Gerritsma, E. Solano, R. Blatt, and C. F. Roos, Realization of a quantum walk with one and two trapped ions, Phys. Rev. Lett. 104, 100503 (2010)

    Article  ADS  Google Scholar 

  32. E. Flurin, V. V. Ramasesh, S. Hacohen-Gourgy, L. S. Martin, N. Y. Yao, and I. Siddiqi, Observing topological invariants using quantum walks in superconducting circuits, Phys. Rev. X 7(3), 031023 (2017)

    Google Scholar 

  33. Z. Yan, Y. R. Zhang, M. Gong, Y. Wu, Y. Zheng, S. Li, C. Wang, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, C. Z. Peng, K. Xia, H. Deng, H. Rong, J. Q. You, F. Nori, H. Fan, X. Zhu, and J. W. Pan, Strongly correlated quantum walks with a 12-qubit superconducting processor, Science 364(6442), 753 (2019)

    Article  ADS  Google Scholar 

  34. J. Du, H. Li, X. Xu, M. Shi, J. Wu, X. Zhou, and R. Han, Experimental implementation of the quantum random-walk algorithm, Phys. Rev. A 67(4), 042316 (2003)

    Article  ADS  Google Scholar 

  35. C. A. Ryan, M. Laforest, J. C. Boileau, and R. Laflamme, Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor, Phys. Rev. A 72(6), 062317 (2005)

    Article  ADS  Google Scholar 

  36. M. Karski, L. Forster, J.M. Choi, A. Steffen, W. Alt, D. Meschede, and A. Widera, Quantum walk in position space with single optically trapped atoms, Science 325(5937), 174 (2009)

    Article  ADS  Google Scholar 

  37. S. Dadras, A. Gresch, C. Groiseau, S. Wimberger, and G. S. Summy, Quantum walk in momentum space with a Bose-Einstein condensate, Phys. Rev. Lett. 121(7), 070402 (2018)

    Article  ADS  Google Scholar 

  38. B. Do, M. L. Stohler, S. Balasubramanian, D. S. Elliott, C. Eash, E. Fischbach, M. A. Fischbach, A. Mills, and B. Zwickl, Experimental realization of a quantum quincunx by use of linear optical elements, J. Opt. Soc. Am. B 22(2), 499 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  39. F. Cardano, F. Massa, H. Qassim, E. Karimi, S. Slus-sarenko, D. Paparo, C. de Lisio, F. Sciarrino, E. Santam-ato, R. W. Boyd, and L. Marrucci, Quantum walks and wavepacket dynamics on a lattice with twisted photons, Sci. Adv. 1(2), e1500087 (2015)

    Article  ADS  Google Scholar 

  40. H. B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Moran-dotti, and Y. Silberberg, Realization of quantum walks with negligible decoherence in waveguide lattices, Phys. Rev. Lett. 100(17), 170506 (2008)

    Article  ADS  Google Scholar 

  41. H. Tang, X.-F. Lin, Z. Feng, J.-Y. Chen, J. Gao, K. Sun, C.-Y. Wang, P.-C. Lai, X.-Y. Xu, Y. Wang, L.-F. Qiao, A.-L. Yang, and X.-M. Jin, Experimental two-dimensional quantum walk on a photonic chip, Sci. Adv. 4, eaat3174 (2018)

    Article  ADS  Google Scholar 

  42. S. E. Venegas-Andraca, Quantum walks: A comprehensive review, Quantum Inform. Process. 11(5), 1015 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. E. Farhi and S. Gutmann, Quantum computation and decision trees, Phys. Rev. A 58(2), 915 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  44. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42(25), 1698 (1979)

    Article  ADS  Google Scholar 

  45. A. T. Schmitz and W. A. Schwalm, Simulating continuous-time Hamiltonian dynamics by way of a discrete-time quantum walk, Phys. Lett. A 380(11–12), 1125 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. A 392(1802), 45 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)

    Article  ADS  Google Scholar 

  48. S. S. Chern, Characteristic classes of Hermitian manifolds, Ann. Math. 47(1), 85 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  49. S. S. Chern and J. Simons, Characteristic forms and geometric invariants, Ann. Math. 99(1), 48 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  50. F. Cardano, M. Maffei, F. Massa, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, and L. Marrucci, Statistical moments of quantum-walk dynamics reveal topological quantum transitions, Nat. Com-mun. 7(1), 11439 (2016)

    Article  ADS  Google Scholar 

  51. F. Cardano, A. D’Errico, A. Dauphin, M. Maffei, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, L. Marrucci, M. Lewenstein, and P. Massignan, Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons, Nat. Commun. 8(1), 15516 (2017)

    Article  ADS  Google Scholar 

  52. Y. Wang, Y. H. Lu, F. Mei, J. Gao, Z. M. Li, H. Tang, S. L. Zhu, S. Jia, and X. M. Jin, Direct observation of topology from single-photon dynamics, Phys. Rev. Lett. 122(19), 193903 (2019)

    Article  ADS  Google Scholar 

  53. T. Groh, S. Brakhane, W. Alt, D. Meschede, J. K. Asboth, and A. Alberti, Robustness of topologically protected edge states in quantum walk experiments with neutral atoms, Phys. Rev. A 94(1), 013620 (2016)

    Article  ADS  Google Scholar 

  54. S. Mugel, A. Celi, P. Massignan, J. K. Asboth, M. Lewenstein, and C. Lobo, Topological bound states of a quantum walk with cold atoms, Phys. Rev. A 94(2), 023631 (2016)

    Article  ADS  Google Scholar 

  55. T. Nitsche, T. Geib, C. Stahl, L. Lorz, C. Cedzich, S. Barkhofen, R. F. Werner, and C. Silberhorn, Eigenvalue measurement of topologically protected edge states in split-step quantum walks, New J. Phys. 21(4), 043031 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  56. W. W. Zhang, S. K. Goyal, C. Simon, and B. C. Sanders, Decomposition of split-step quantum walks for simulating Majorana modes and edge states, Phys. Rev. A 95(5), 052351 (2017)

    Article  ADS  Google Scholar 

  57. S. Yao, Z. Yan, and Z. Wang, Topological invariants of Floquet systems: General formulation, special properties, and Floquet topological defects, Phys. Rev. B 96(19), 195303 (2017)

    Article  ADS  Google Scholar 

  58. B. Tarasinski, J. K. Asboth, and J. P. Dahlhaus, Scattering theory of topological phases in discrete-time quantum walks, Phys. Rev. A 89(4), 042327 (2014)

    Article  ADS  Google Scholar 

  59. S. Barkhofen, T. Nitsche, F. Elster, L. Lorz, A. Gabris, I. Jex, and C. Silberhorn, Measuring topological invariants in disordered discrete-time quantum walks, Phys. Rev. A 96(3), 033846 (2017)

    Article  ADS  Google Scholar 

  60. J. K. Asboth and H. Obuse, Bulk-boundary correspondence for chiral symmetric quantum walks, Phys. Rev. B 88, 121406(R) (2013)

    Google Scholar 

  61. J. K. Asboth, B. Tarasinski, and P. Delplace, Chiral symmetry and bulk-boundary correspondence in periodically driven one-dimensional systems, Phys. Rev. B 90, 125143 (2014)

    Article  ADS  Google Scholar 

  62. H. Obuse, J. K. Asboth, Y. Nishimura, and N. Kawakami, Unveiling hidden topological phases of a one-dimensional Hadamard quantum walk, Phys. Rev. B 92(4), 045424 (2015)

    Article  ADS  Google Scholar 

  63. C. Cedzich, F. A. Grünbaum, C. Stahl, L. Velazquez, A. H. Werner, and R. F. Werner, Bulk-edge correspondence of one-dimensional quantum walks, J. Phys. A 49(21), 21LT01 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  64. C. Cedzich, T. Geib, F. A. Griinbaum, C. Stahl, L. Velazquez, A. H. Werner, and R. F. Werner, The topological classification of one-dimensional symmetric quantum walks, Annates Henri Poincare 19, 325 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. C. Cedzich, T. Geib, C. Stahl, L. Velázquez, A. H. Werner, and R. F. Werner, Complete homotopy invariants for translation invariant symmetric quantum walks on a chain, Quantum 2, 95 (2018)

    Article  Google Scholar 

  66. C. Cedzich, and T. Geib, F. A. Grünbaum, L. Velazquez, A. H. Werner, and R. F. Werner, Quantum walks: Schur functions meet symmetry protected topological phases, arXiv: 1903.07494 [math-ph] (2019)

    Google Scholar 

  67. J. K. Asboth and J. M. Edge, Edge-state-enhanced transport in a two-dimensional quantum walk, Phys. Rev. A 91, 022324 (2015)

    Article  ADS  Google Scholar 

  68. B. Wang, T. Chen, and X. Zhang, Experimental observation of topologically protected bound states with vanishing Chern numbers in a two-dimensional quantum walk, Phys. Rev. Lett. 121(10), 100501 (2018)

    Article  ADS  Google Scholar 

  69. X. Y. Xu, Q. Q. Wang, W. W. Pan, K. Sun, J. S. Xu, G. Chen, J. S. Tang, M. Gong, Y. J. Han, C. F. Li, and G. C. Guo, Measuring the winding number in a large-scale chiral quantum walk, Phys. Rev. Lett. 120(26), 260501 (2018)

    Article  ADS  Google Scholar 

  70. V. V. Ramasesh, E. Flurin, M. Rudner, I. Siddiqi, and N. Y. Yao, Direct probe of topological invariants using Bloch oscillating quantum walks, Phys. Rev. Lett. 118(13), 130501 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  71. A. Blanco-Redondo, I. Andonegui, M. J. Collins, G. Harari, Y. Lumer, M. C. Rechtsman, B. J. Eggleton, and M. Segev, Topological optical waveguiding in silicon and the transition between topological and trivial defect states, Phys. Rev. Lett. 116(16), 163901 (2016)

    Article  ADS  Google Scholar 

  72. L. Zhang, L. Zhang, S. Niu, and X. J. Liu, Dynamical classification of topological quantum phases, Sci. Bull. 63(21), 1385 (2018)

    Article  Google Scholar 

  73. C. M. Bender, and S. Boettcher, Real spectra in non-Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80(24), 5243 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. K. Mochizuki, D. Kim, and H. Obuse, Explicit definition of PT symmetry for nonunitary quantum walks with gain and loss, Phys. Rev. A 93(6), 062116 (2016)

    Article  ADS  Google Scholar 

  75. K. Wang, X. Qiu, L. Xiao, X. Zhan, Z. Bian, B. C. Sanders, W. Yi, and P. Xue, Observation of emergent momentum-time skyrmions in parity-time-symmetric non-unitary quench dynamics, Nat. Commun. 10(1), 2293 (2019)

    Article  ADS  Google Scholar 

  76. Y. Ming, C.T. Lin, S. D. Bartlett, and W. W. Zhang, Quantum topology identification with deep neural networks and quantum walks, arXiv: 1811.12630 [quant-ph] (2018)

    Google Scholar 

  77. B. S. Rem, N. Käming, M. Tarnowski, L. Asteria, N. Flaschner, C. Becker, K. Sengstock, and C. Weiten-berg, Identifying quantum phase transitions using artificial neural networks on experimental data, Nat. Phys. (2019), DOI: 10.1038/s41567-019-0554-0

    Google Scholar 

Download references

Acknowledgments

B. C. S. and J. W. are supported by the National Natural Science Foundation of China (NSFC) with Grant No. 11675164. W. Z. is supported by the Australian Research Council (ARC) via the Centre of Excellence in Engineered Quantum Systems (EQuS) project number CE110001013, and USyd-SJTU Partnership Collaboration Awards.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jizhou Wu, Wei-Wei Zhang or Barry C. Sanders.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Zhang, WW. & Sanders, B.C. Topological quantum walks: Theory and experiments. Front. Phys. 14, 61301 (2019). https://doi.org/10.1007/s11467-019-0918-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-019-0918-z

Navigation