Skip to main content
Log in

Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We report theoretical investigations on the role of interfacial bonding mechanism and its resulting structures to quantum transport in molecular wires. Two bonding mechanisms for the Au-S bond in an Au(111)/1,4-benzenedithiol(BDT)/Au(111) junction were identified by ab initio calculation, confirmed by a recent experiment, which, we showed, critically control charge conduction. It was found, for Au/BDT/Aujunctions, the hydrogen atom, bound by a dative bond to the Sulfur, is energetically non-dissociativeafter the interface formation. The calculated conductance and junction breakdown forces of H-non-dissociative Au/BDT/Au devices are consistent with the experimental values, while the H-dissociated devices, with the interface governed by typical covalent bonding, give conductance more than an order of magnitude larger. By examining the scattering states that traverse the junctions, we have revealed that mechanical and electric properties of a junction have strong correlation with the bonding configuration. This work clearly demonstrates that the interfacial details, rather than previously believed many-body effects, is of vital importance for correctly predicting equilibrium conductance of molecular junctions; and manifests that the interfacial contact must be carefully understood for investigating quantum transport properties of molecular nanoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, and T. Lee, Observation of molecular orbital gating, Nature, 2009, 462(7276): 1039

    Article  ADS  Google Scholar 

  2. X. Y. Xiao, B. Q. Xu and N. J. Tao, Measurement of single molecule conductance: Benzenedithiol and benzenedimethanethiol, Nano Lett., 2004, 4(2): 267

    Article  ADS  Google Scholar 

  3. M. Tsutsui, M. Taniguchi, and T. Kawai, Atomistic mechanics and formation mechanism of metal-molecule-metal junctions, Nano Lett., 2009, 9(6): 2433

    Article  ADS  Google Scholar 

  4. M. Di Ventra, S. T. Pantelides, and N. D. Lang, The benzene molecule as a molecular resonant-tunneling transistor, Appl. Phys. Lett., 2000, 76(23): 3448

    Article  ADS  Google Scholar 

  5. K. Stokbro, J. Taylor, M. Brandbyge, J. L. Mozos, and P. Ordejón, Theoretical study of the nonlinear conductance of Di-thiol benzene coupled to Au(111) surfaces via thiol and thiolate bonds, Comput. Mater. Sci., 2003, 27(1–2): 151

    Article  Google Scholar 

  6. T. Tada, M. Kondo, and K. Yoshizawa, Green’s function formalism coupled with Gaussian broadening of discrete states for quantum transport: Application to atomic and molecular wires, J. Chem. Phys., 2004, 121(16): 8050

    Article  ADS  Google Scholar 

  7. S.-H. Ke, H. U. Baranger, and W. Yang, Molecular conductance: Chemical trends of anchoring groups, Journal of the American Chemical Society, 2004, 126(48): 15897

    Article  Google Scholar 

  8. P. Delaney and J. C. Greer, Correlated electron transport in molecular electronics, Phys. Rev. Lett., 2004, 93(3): 036805

    Article  ADS  Google Scholar 

  9. G. C. Solomon, J. R. Reimers, and N. S. Hush, Overcoming computational uncertainties to reveal chemical sensitivity in single molecule conduction calculations, J. Chem. Phys., 2005, 122(22): 224502

    Article  ADS  Google Scholar 

  10. R. B. Pontes, F. D. Novaes, A. Fazzio, and A. J. R. da Silva, Adsorption of benzene-1,4-dithiol on the Au (111) surface and its possible role in molecular conductance, Journal of the American Chemical Society, 2006, 128(28): 8996

    Article  Google Scholar 

  11. D. Q. Andrews, R. P. Van Duyne, and M. A. Ratner, Stochastic modulation in molecular electronic transport junctions: molecular dynamics coupled with charge transport calculations, Nano Lett., 2008, 8(4): 1120

    Article  ADS  Google Scholar 

  12. J. Nara, W. T. Geng, H. Kino, N. Kobayashi, and T. Ohno, Theoretical investigation on electron transport through an organic molecule: Effect of the contact structure, J. Chem. Phys., 2004, 121(13): 6485

    Article  ADS  Google Scholar 

  13. C. Toher and S. Sanvito, Efficient atomic self-interaction correction scheme for nonequilibrium quantum transport, Phys. Rev. Lett., 2007, 99(5): 056801

    Article  ADS  Google Scholar 

  14. C. Toher and S. Sanvito, Effects of self-interaction corrections on the transport properties of phenyl-based molecular junctions, Phys. Rev. B, 2008, 77(15): 155402

    Article  ADS  Google Scholar 

  15. M. Strange, I. S. Kristensen, K. S. Thygesen, and K. W. Jacobsen, Benchmark density functional theory calculations for nanoscale conductance, J. Chem. Phys., 2008, 128(11): 114714

    Article  ADS  Google Scholar 

  16. S. Y. Quek, H. J. Choi, S. G. Louie, and J. B. Neaton, Length dependence of conductance in aromatic single-molecule junctions, Nano Lett., 2009, 9(11): 3949

    Article  Google Scholar 

  17. M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Conductance of a molecular junction, Science, 1997, 278(5336): 252

    Article  Google Scholar 

  18. Z. Huang, B. Q. Xu, Y. C. Chen, M. Di Ventra, and N. J. Tao, Measurement of current-induced local heating in a single molecule junction, Nano Lett., 2006, 6(6): 1240

    Article  ADS  Google Scholar 

  19. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, 77(18): 3865

    Article  ADS  Google Scholar 

  20. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 1999, 59(3): 1758

    Article  ADS  Google Scholar 

  21. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 1996, 54(16): 11169

    Article  ADS  Google Scholar 

  22. J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B, 2001, 63(24): 245407

    Article  ADS  Google Scholar 

  23. Z. Ning, Y. Zhu, J. Wang, and H. Guo, Quantitative analysis of nonequilibrium spin injection into molecular tunnel junctions, Phys. Rev. Lett., 2008, 100(5): 056803

    Article  ADS  Google Scholar 

  24. Y. Hu, Y. Zhu, H. Gao, and H. Guo, Conductance of an ensemble of molecular wires: A statistical analysis, Phys. Rev. Lett., 2005, 95(15): 156803

    Article  ADS  Google Scholar 

  25. M. Kamenetska, M. Koentopp, A. C. Whalley, Y. S. Park, M. L. Steigerwald, C. Nuckolls, M. S. Hybertsen, and L. Venkataraman, Formation and evolution of single-molecule junctions, Phys. Rev. Lett., 2009, 102(12): 126803

    Article  ADS  Google Scholar 

  26. C.-C. Kaun and H. Guo, Resistance of alkanethiol molecular wires, Nano Lett., 2003, 3(11): 1521

    Article  ADS  Google Scholar 

  27. F.-S. Li, W. Zhou, and Q. Guo, Uncovering the hidden gold atoms in a self-assembled monolayer of alkanethiol molecules on Au(111), Phys. Rev. B, 2009, 79(11): 113412

    Article  ADS  Google Scholar 

  28. I. I. Rzeźnicka, J. Lee, P. Maksymovych, and J. T. Yates, Nondissociative chemisorption of short chain alkanethiols on Au(111), J. Phys. Chem. B, 2005, 109(33): 15992

    Article  Google Scholar 

  29. J.-G. Zhou and F. Hagelberg, Do Methanethiol adsorbates on the Au(111) surface dissociate? Phys. Rev. Lett., 2006, 97(4): 045505

    Article  ADS  Google Scholar 

  30. T. Rangel, A. Ferretti, P. E. Trevisanutto, V. Olevano, and G. M. Rignanese, Transport properties of molecular junctions from many-body perturbation theory, Phys. Rev. B, 2011, 84(4): 045426

    Article  ADS  Google Scholar 

  31. M. Strange, C. Rostgaard, H. Häkkinen, and K. S. Thygesen, Self-consistent GW calculations of electronic transport in thiol- and amine-linked molecular junctions, Phys. Rev. B, 2011, 83(11): 115108

    Article  ADS  Google Scholar 

  32. W. Ji, Z.-Y. Lu, and H.-J. Gao, Multichannel interaction mechanism in a molecule-metal interface, Phys. Rev. B, 2008, 77(11): 113406

    Article  ADS  Google Scholar 

  33. W. Ji, Z.-Y. Lu, and H. Gao, Electron core-hole interaction and its induced ionic structural relaxation in molecular systems under X-ray irradiation, Phys. Rev. Lett., 2006, 97(24): 246101

    Article  ADS  Google Scholar 

  34. Z.-X. Hu, H. Lan, and W. Ji, Role of the dispersion force in modeling the interfacial properties of molecule-metal interfaces: Adsorption of thiophene on copper surfaces, Sci. Rep., 2014, 4: 5036

    ADS  Google Scholar 

  35. L. Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, Dependence of single-molecule junction conductance on molecular conformation, Nature, 2006, 442(7105): 904

    Article  ADS  Google Scholar 

  36. Y. Jiang, Q. Huan, L. Fabris, G. C. Bazan, and W. Ho, Submolecular control, spectroscopy and imaging of bondselective chemistry in single functionalized molecules, Nat. Chem., 2013, 5(1): 36

    Article  Google Scholar 

  37. F. Cheng, W. Ji, L. Leung, Z. Ning, J. C. Polanyi, and C.-G. Wang, How adsorbate alignment leads to selective reaction, ACS Nano, 2014, 8(8): 8669

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Ji  (季威) or Hong Guo  (郭鸿).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, ZY., Qiao, JS., Ji, W. et al. Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions. Front. Phys. 9, 780–788 (2014). https://doi.org/10.1007/s11467-014-0453-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-014-0453-x

Keywords

Navigation