Skip to main content
Log in

Global dynamical correlation energies in covariant density functional theory: Cranking approximation

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The global dynamical correlation energies for 575 even-even nuclei with proton numbers ranging from Z = 8 to Z = 108 calculated with the covariant density functional theory using the PC-PK1 parametrization are presented. The dynamical correlation energies include the rotational correction energies obtained with the cranking approximation and the quadrupole vibrational correction energies. The systematic behavior of the present correlation energies is in good agreement with that obtained from the projected generator coordinate method using the SLy4 Skyrme force although our values are systematically smaller. After including the dynamical correlation energies, the root-mean-square deviation predicted by the PC-PK1 for the 575 even-even nuclei masses is reduced from 2.58 MeV to 1.24 MeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and notes

  1. I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikawa, K. Sugimoto, O. Yamakawa, T. Kobayashi, and N. Takahashi, Measurements of interaction cross sections and nuclear radii in the light p-shell region, Phys. Rev. Lett., 1985, 55(24): 2676

    Article  ADS  Google Scholar 

  2. A. C. Mueller and B. M. Sherrill, Nucli at the limits of particle stability, Annu. Rev. Nucl. Part. Sci., 1993, 43(1): 529

    Article  ADS  Google Scholar 

  3. I. Tanihata, Nuclear structure studies from reaction induced by radioactive nuclear beams, Prog. Part. Nucl. Phys., 1995, 35: 505

    Article  ADS  Google Scholar 

  4. J. Meng and P. Ring, Relativistic Hartree-Bogoliubov description of the neutron halo in 11Li, Phys. Rev. Lett., 1996, 77(19): 3963

    Article  ADS  Google Scholar 

  5. J. Meng and P. Ring, Giant halo at the neutron drip line, Phys. Rev. Lett., 1998, 80(3): 460

    Article  ADS  Google Scholar 

  6. O. Sorlin and M. G. Porquet, Nuclear magic numbers: New features far from stability, Prog. Part. Nucl. Phys., 2008, 61(2): 602

    Article  ADS  Google Scholar 

  7. A. Ozawa, T. Kobayashi, T. Suzuki, K. Yoshida, and I. Tanihata, New magic number, N = 16, near the neutron drip line, Phys. Rev. Lett., 2000, 84(24): 5493

    Article  ADS  Google Scholar 

  8. S. G. Zhou, J. Meng, P. Ring, and E. G. Zhao, Neutron halo in deformed nuclei, Phys. Rev. C, 2010, 82(1): 011301

    Article  ADS  Google Scholar 

  9. E.M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, Synthesis of the elements in stars, Rev. Mod. Phys., 1957, 29(4): 547

    Article  ADS  Google Scholar 

  10. B. Sun, F. Montes, L. S. Geng, H. Geissel, Y. A. Litvinov, and J. Meng, Application of the relativistic mean-field mass model to the r-process and the influence of mass uncertainties, Phys. Rev. C, 2008, 78(2): 025806

    Article  ADS  Google Scholar 

  11. Z. M. Niu, B. Sun, and J. Meng, Influence of nuclear physics inputs and astrophysical conditions on the Th/U chronometer, Phys. Rev. C, 2009, 80(6): 065806

    Article  ADS  Google Scholar 

  12. Z. Li, Z. M. Niu, B. Sun, N. Wang, and J. Meng, WLW mass model in nuclear r-process calculations, Acta Phys. Sin., 2012, 61(7): 072601 (in Chinese)

    Google Scholar 

  13. W. H. Zhang, Z. M. Niu, F. Wang, X. B. Gong, and B. H. Sun, Uncertainties of nucleo-chronometers from nuclear physics inputs, Acta Phys. Sin., 2012, 61(11): 112601 (in Chinese)

    Google Scholar 

  14. X. D. Xu, B. Sun, Z. M. Niu, Z. Li, Y. Z. Qian, and J. Meng, Reexamining the temperature and neutron density conditions for r-process nucleosynthesis with augmented nuclear mass models, Phys. Rev. C, 2013, 87(1): 015805

    Article  ADS  Google Scholar 

  15. Z. M. Niu, Y. F. Niu, H. Z. Liang, W. H. Long, T. Nikšić, D. Vretenar, and J. Meng, b-decay half-lives of neutron-rich nuclei and matter flow in the r-process, Phys. Lett. B, 2013, 723(1–3): 172

    Article  ADS  Google Scholar 

  16. P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, Nuclear ground-state masses and deformations, At. Data Nucl. Data Tables, 1995, 59(2): 185

    Article  ADS  Google Scholar 

  17. H. A. Bethe and R. F. Bacher, Nuclear Physics A. Stationary states of nuclei, Rev. Mod. Phys., 1936, 8(2): 82

    Article  ADS  Google Scholar 

  18. N. Wang, Z. Liang, M. Liu, and X. Wu, Mirror nuclei constraint in nuclear mass formula, Phys. Rev. C, 2010, 82(4): 044304

    Article  ADS  Google Scholar 

  19. M. Liu, N. Wang, Y. Deng, and X. Wu, Further improvements on a global nuclear mass model, Phys. Rev. C, 2011, 84(1): 014333

    Article  ADS  Google Scholar 

  20. J. Duflo and A. P. Zuker, Microscopic mass formulas, Phys. Rev. C, 1995, 52(1): R23

    Article  ADS  Google Scholar 

  21. H. Koura, T. Tachibana, M. Uno, and M. Yamada, Nuclidic mass formula on a spherical basis with an improved even-odd term, Prog. Theor. Phys., 2005, 113(2): 305

    Article  ADS  Google Scholar 

  22. M. Bender, G. F. Bertsch, and P. H. Heenen, Systematics of quadrupolar correlation energies, Phys. Rev. Lett., 2005, 94(10): 102503

    Article  ADS  Google Scholar 

  23. M. Bender, G. F. Bertsch, and P. H. Heenen, Global study of quadrupole correlation effects, Phys. Rev. C, 2006, 73(3): 034322

    Article  ADS  Google Scholar 

  24. S. Goriely, N. Chamel, and J. M. Pearson, Skyrme-Hartree-Fock-Bogoliubov nuclear mass formulas: Crossing the 0.6 MeV accuracy threshold with microscopically deduced pairing, Phys. Rev. Lett., 2009, 102(15): 152503

    Article  ADS  Google Scholar 

  25. S. Goriely, N. Chamel, and J. M. Pearson, Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XII. Stiffness and stability of neutron-star matter, Phys. Rev. C, 2010, 82(3): 035804

    Article  ADS  Google Scholar 

  26. S. Goriely, S. Hilaire, M. Girod, and S. Péru, First Gogny-Hartree-Fock-Bogoliubov nuclear mass model, Phys. Rev. Lett., 2009, 102(24): 242501

    Article  ADS  Google Scholar 

  27. P. G. Reinhard, The relativistic mean-field description of nuclei and nuclear dynamics, Rep. Prog. Phys., 1989, 52(4): 439

    Article  ADS  Google Scholar 

  28. P. Ring, Relativistic mean field theory in finite nuclei, Prog. Part. Nucl. Phys., 1996, 37: 193

    Article  ADS  Google Scholar 

  29. D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring, Relativistic Hartree-Bogoliubov theory: Static and dynamic aspects of exotic nuclear structure, Phys. Rep., 2005, 409(3–4): 101

    Article  ADS  Google Scholar 

  30. J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei, Prog. Part. Nucl. Phys., 2006, 57(2): 470

    Article  ADS  Google Scholar 

  31. D. Hirata, K. Sumiyoshi, I. Tanihata, Y. Sugahara, T. Tachibana, and H. Toki, A systematic study of even-even nuclei up to the drip lines within the relativistic mean field framework, Nucl. Phys. A, 1997, 616(1–2): 438

    Article  ADS  Google Scholar 

  32. G. A. Lalazissis, S. Raman, and P. Ring, Ground-state properties of even-even nuclei in the relativistic mean-field theory, At. Data Nucl. Data Tables, 1999, 71(1): 1

    Article  ADS  Google Scholar 

  33. L. S. Geng, H. Toki, and J. Meng, Masses, Deformations and charge radii — nuclear ground-state properties in the relativistic mean field model, Prog. Theor. Phys., 2005, 113(4): 785

    Article  ADS  Google Scholar 

  34. T. Nikšić, D. Vretenar, and P. Ring, Beyond the relativistic mean-field approximation. II. Configuration mixing of mean-field wave functions projected on angular momentum and particle number, Phys. Rev. C, 2006, 74(6): 064309

    Article  ADS  Google Scholar 

  35. J. M. Yao, J. Meng, P. Ring, and D. Pena Arteaga, Threedimensional angular momentum projected relativistic pointcoupling approach for low-lying excited states in 24 Mg, Chin. Phys. Lett., 2008, 25(10): 3609

    Article  ADS  Google Scholar 

  36. J. M. Yao, J. Meng, P. Ring, and D. Pena Arteaga, Threedimensional angular momentum projection in relativistic mean-field theory, Phys. Rev. C, 2009, 79(4): 044312

    Article  ADS  Google Scholar 

  37. J. M. Yao, J. Meng, P. Ring, and D. Vretenar, Configuration mixing of angular-momentum-projected triaxial relativistic mean-field wave functions, Phys. Rev. C, 2010, 81(4): 044311

    Article  ADS  Google Scholar 

  38. T. Nikšić, Z. P. Li, D. Vretenar, L. Próchniak, J. Meng, and P. Ring, Beyond the relativistic mean-field approximation. III. Collective Hamiltonian in five dimensions, Phys. Rev. C, 2009, 79(3): 034303

    Article  ADS  Google Scholar 

  39. Z. P. Li, T. Nikšić, D. Vretenar, J. Meng, G. A. Lalazissis, and P. Ring, Microscopic analysis of nuclear quantum phase transitions in the N ≈90 region, Phys. Rev. C, 2009, 79(5): 054301

    Article  ADS  Google Scholar 

  40. Z. M. Niu, Y. F. Niu, Q. Liu, H. Z. Liang, and J. Y. Guo, Nuclear β+/EC decays in covariant density functional theory and the impact of isoscalar proton-neutron pairing, Phys. Rev. C, 2013, 87(5): 051303(R)

    Article  ADS  Google Scholar 

  41. J. M. Yao, H. Mei, H. Chen, J. Meng, P. Ring, and D. Vretenar, Configuration mixing of angular-momentum-projected triaxial relativistic mean-field wave functions. II. Microscopic analysis of low-lying states in magnesium isotopes, Phys. Rev. C, 2011, 83(1): 014308

    Article  ADS  Google Scholar 

  42. P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, New parametrization for the nuclear covariant energy density functional with a point-coupling interaction, Phys. Rev. C, 2010, 82(5): 054319

    Article  ADS  Google Scholar 

  43. P. W. Zhao, S. Q. Zhang, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Novel structure for magnetic rotation bands in 60Ni, Phys. Lett. B, 2011, 699(3): 181

    Article  ADS  Google Scholar 

  44. P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Antimagnetic rotation band in nuclei: A microscopic description, Phys. Rev. Lett., 2011, 107(12): 122501

    Article  ADS  Google Scholar 

  45. J. Xiang, Z. P. Li, Z. X. Li, J. M. Yao, and J. Meng, Covariant description of shape evolution and shape coexistence in neutron-rich nuclei at N ≈ 60, Nucl. Phys. A, 2012, 873: 1

    Article  ADS  Google Scholar 

  46. Z. P. Li, C. Y. Li, J. Xiang, J. M. Yao, and J. Meng, Enhanced collectivity in neutron-deficient Sn isotopes in energy functional based collective Hamiltonian, Phys. Lett. B, 2012, 717(4–5): 470

    Article  ADS  Google Scholar 

  47. X. M. Hua, T. H. Heng, Z. M. Niu, B. Sun, and J. Y. Guo, Comparative study of nuclear masses in the relativistic mean-field model, Sci. China Phys. Mech. Astron., 2012, 55(12): 2414

    Article  ADS  Google Scholar 

  48. P. W. Zhao, L. S. Song, B. Sun, H. Geissel, and J. Meng, Crucial test for covariant density functional theory with new and accurate mass measurements from Sn to Pa, Phys. Rev. C, 2012, 86(6): 064324

    Article  ADS  Google Scholar 

  49. J. Meng, J. Peng, S. Q. Zhang, and P. W. Zhao, Progress on tilted axis cranking covariant density functional theory for nuclear magnetic and antimagnetic rotation, Front. Phys., 2013, 8(1): 55

    Article  Google Scholar 

  50. X. Y. Qu, Y. Chen, S. Q. Zhang, P. W. Zhao, I. J. Shin, Y. Lim, Y. Kim, and J. Meng, Extending the nuclear chart by continuum: From oxygen to titanium, Sci. China Phys. Mech. Astron., 2013, 56(11): 2031

    Article  ADS  Google Scholar 

  51. T. Bürvenich, D. G. Madland, J. A. Maruhn, and P. G. Reinhard, Nuclear ground state observables and QCD scaling in a refined relativistic point coupling model, Phys. Rev. C, 2002, 65(4): 044308

    Article  ADS  Google Scholar 

  52. S. Goriely, M. Samyn, J. M. Pearson, and M. Onsi, Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. IV: Neutron-matter constraint, Nucl. Phys. A, 2005, 750(2–4): 425

    Article  ADS  Google Scholar 

  53. N. Chamel, S. Goriely, and J. M. Pearson, Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. IX: Constraint of pairing force to 1S0 neutron-matter gap, Nucl. Phys. A, 2008, 812(1–4): 72

    Article  ADS  Google Scholar 

  54. D. Inglis, Nuclear moments of inertia due to nucleon motion in a rotating well, Phys. Rev., 1956, 103(6): 1786

    Article  ADS  Google Scholar 

  55. S. Belyaev, Concerning the calculation of the nuclear moment of inertia, Nucl. Phys. A, 1961, 24: 322

    Article  Google Scholar 

  56. See Supplemental files for the detailed results.

  57. R. R. Rodríguez-Guzmán, J. L. Egido, and L. M. Robledo, Angular momentum projected analysis of quadrupole collectivity in 30,32,34Mg and 32,34,36,38Si with the Gogny interaction, Phys. Lett. B, 2000, 474(1–2): 15

    Article  ADS  Google Scholar 

  58. Z. P. Li, J. M. Yao, D. Vretenar, T. Nikšić, H. Chen, and J. Meng, Energy density functional analysis of shape evolution in N=28 isotones, Phys. Rev. C, 2011, 84(5): 054304

    Article  ADS  Google Scholar 

  59. K. Heyde and J. L. Wood, Shape coexistence in atomic nuclei, Rev. Mod. Phys., 2011, 83(4): 1467

    Article  ADS  Google Scholar 

  60. G. Audi, A. H. Wapstra, and C. Thibault, The Ame2003 atomic mass evaluation, Nucl. Phys. A, 2003, 729(1): 337

    Article  ADS  Google Scholar 

  61. T. R. Rodríguez and J. L. Egido, Multiple shape coexistence in the nucleus, Phys. Lett. B, 2011, 705(3): 255

    Article  ADS  Google Scholar 

  62. Y. Fu, H. Mei, J. Xiang, Z. P. Li, J. M. Yao, and J. Meng, Beyond relativistic mean-field studies of low-lying states in neutron-deficient krypton isotopes, Phys. Rev. C, 2013, 87(5): 054305

    Article  ADS  Google Scholar 

  63. E. Wigner, On the consequences of the symmetry of the nuclear hamiltonian on the spectroscopy of nuclei, Phys. Rev., 1937, 51(2): 106

    Article  ADS  Google Scholar 

  64. S. Goriely, M. Samyn, P. H. Heenen, J. M. Pearson, and F. Tondeur, Hartree-Fock mass formulas and extrapolation to new mass data, Phys. Rev. C, 2002, 66(2): 024326

    Article  ADS  Google Scholar 

  65. P. Möller, R. Bengtsson, B. G. Carlsson, P. Olivius, and T. Ichikawa, Global calculations of ground-state axial shape asymmetry of nuclei, Phys. Rev. Lett., 2006, 97(16): 162502

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Pan Li  (李志攀), Jiang-Ming Yao  (尧江明) or Jie Meng  (孟 杰).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, QS., Niu, ZM., Li, ZP. et al. Global dynamical correlation energies in covariant density functional theory: Cranking approximation. Front. Phys. 9, 529–536 (2014). https://doi.org/10.1007/s11467-014-0413-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-014-0413-5

Keywords

Navigation