Skip to main content
Log in

A jellium model analysis on quantum growth of metal nanowires and nanomesas

  • Research Article
  • Published:
Frontiers of Physics in China Aims and scope Submit manuscript

Abstract

A simple jellium model is used to investigate the stability of a metal nanowire as a function of its size. The theoretical results from the model indicate the quantum selectivity of preferable radii of nanowires, in apparent agreement with the experimental observations. It is consequently suggested that a series of stable “magic numbers” and “instability gaps” observed in the synthesis experiments of Au nanowires is mainly attributed to the quantum-mechanical behavior. These stable radii can be achieved by rearranging atoms during the formation of nanowires. The model is also used to analyze the growth of Au nanomesas on a graphite surface, and the puzzling growth behavior of Au nanomesas can be reasonably explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. L. Cohen and W. D. Knight, Phys. Today, 1990, 43(12): 42

    Article  ADS  Google Scholar 

  2. W. A. de Heer, Rev. Mod. Phys., 1993, 65: 611

    Article  ADS  Google Scholar 

  3. M. Brack, Rev. Mod. Phys., 1993, 65: 677

    Article  ADS  Google Scholar 

  4. T. P. Martin, Phys. Rep., 1996, 273: 199

    Article  ADS  Google Scholar 

  5. V. Lindberg and B. Hellsing, J. Phys.: Condens. Matter, 2005, 17: S1075

    ADS  Google Scholar 

  6. F. Liu, S. N. Khanna, and P. Jena, Phys. Rev. B, 1990, 42: 976

    Article  ADS  Google Scholar 

  7. F. K. Schulte, Surf. Sci., 1976, 55: 427

    Article  ADS  Google Scholar 

  8. Y. Han, J. W. Evans, and D.-J. Liu, Surf. Sci., 2008, in press, DOI: 10.1016/j.susc.2008.05.040

  9. A. I. Yanson, I. K. Yanson, and J. M. van Ruitenbeek, Nature, 1999, 400: 144

    Article  ADS  Google Scholar 

  10. A. I. Yanson, I. K. Yanson, and J. M. van Ruitenbeek, Phys. Rev. Lett., 2000, 84: 5832

    Article  ADS  Google Scholar 

  11. A. I. Yanson, I. K. Yanson, and J. M. van Ruitenbeek, Phys. Rev. Lett., 2001, 87: 216805

    Article  ADS  Google Scholar 

  12. M. Díaz, J. L. Costa-Krämer, E. Medina, A. Hasmy, and P. A. Serena, Nanotechnology, 2003, 14: 113

    Article  ADS  Google Scholar 

  13. A. I. Mares, A. F. Otte, L. G. Soukiassian, R. H. M. Smit, and J. M. van Ruitenbeek, Phys. Rev. B, 2004, 70: 073401

    Article  ADS  Google Scholar 

  14. A. I. Mares and J. M. van Ruitenbeek, Phys. Rev. B, 2005, 72: 205402

    Article  ADS  Google Scholar 

  15. A. I. Mares, D. F. Urban, J. Bürki, H. Grabert, C. A. Stafford, and J.M. van Ruitenbeek, Nanotechnology, 2007, 18: 265403

    Article  ADS  Google Scholar 

  16. A. I. Yanson and J. M. van Ruitenbeek, Phys. Rev. Lett., 1997, 79: 2157

    Article  ADS  Google Scholar 

  17. I. K. Yanson, O. I. Shklyarevskii, J. M. van Ruitenbeek, and S. Speller, Phys. Rev. B, 2008, 77: 033411

    Article  ADS  Google Scholar 

  18. T. W. Cornelius, M. E. Toimil-Molares, S. Karim, and R. Neumann, Phys. Rev. B, 2008, 77: 125425

    Article  ADS  Google Scholar 

  19. Y. Kondo and K. Takayanagi, Science, 2000, 289: 606

    Article  ADS  Google Scholar 

  20. C. A. Stafford, D. Baeriswy, and J. Bürki, Phys. Rev. Lett., 1997, 79: 2863

    Article  ADS  Google Scholar 

  21. J. M. van Ruitenbeek, M. H. Devoret, D. Esteve, and C. Urbina, Phys. Rev. B, 1997, 56: 12566

    Article  ADS  Google Scholar 

  22. C. Höppler and W. Zwerger, Phys. Rev. Lett., 1998, 80: 1792

    Article  ADS  Google Scholar 

  23. D. F. Urban, J. Bürki, C.-H. Zhang, C. A. Stafford, and H. Grabert, Phys. Rev. Lett., 2004, 93: 186403

    Article  ADS  Google Scholar 

  24. J. Bürki and C. A. Stafford, Appl. Phys. A, 2005, 81: 1519

    Article  ADS  Google Scholar 

  25. D. F. Urban, J. Bürki, C. A. Stafford, and H. Grabert, Phys. Rev. B, 2006, 74: 245414

    Article  ADS  Google Scholar 

  26. J. D. McBride, B. V. Tassell, R. C. Jachmann, and J. Thomas P. Beebe, J. Phys. Chem. B, 2001, 105: 3972

    Article  Google Scholar 

  27. H. Hövel, Th. Becker, A. Bettac, B. Reihl, M. Tschudy, and E. J. Williams, J. Appl. Phys., 1997, 81: 154

    Article  ADS  Google Scholar 

  28. H. Hövel, Th. Becker, A. Bettac, B. Reihl, M. Tschudy, and E. J. Williams, Appl. Surf. Sci., 1997, 115: 124

    Article  ADS  Google Scholar 

  29. Y.-J. Zhu, A. Schnieders, J. D. Alexander, J. Thomas, and P. Beebe, Langmuir, 2002, 18: 5728

    Article  Google Scholar 

  30. W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, and M. L. Cohen, Phys. Rev. Lett., 1984, 52: 2141

    Article  ADS  Google Scholar 

  31. R. D. Woods and D. S. Saxon, Phys. Rev., 1954, 95: 577

    Article  ADS  Google Scholar 

  32. K. Clemenger, Phys. Rev. B, 1985, 32: 1359

    Article  ADS  Google Scholar 

  33. S. G. Nilsson, Mat.-Fys. Medd. Dan. Vidensk. Selsk., 1955, 29(16)

  34. Y. Han, High Energ. Phys. Nucl., 2000, 24: 546

    Google Scholar 

  35. Z. Zhang, Q. Niu, and C.-K. Shih, Phys. Rev. Lett., 1998, 80: 5381

    Article  ADS  Google Scholar 

  36. B. Wu and Z. Zhang, Phys. Rev. B, 2008, 77: 035410

    Article  ADS  Google Scholar 

  37. G. Mills, B. Wang, W. Ho, and H. Metiu, J. Chem. Phys., 2004, 120: 7738

    Article  ADS  Google Scholar 

  38. Y. Oshima, A. Onga, and K. Takayanagi, Phys. Rev. Lett., 2003, 91: 205503

    Article  ADS  Google Scholar 

  39. Y. Han, J. Y. Zhu, F. Liu, S.-C. Li, J.-F. Jia, Y.-F. Zhang, and Q.-K. Xue, Phys. Rev. Lett., 2004, 93: 106102

    Article  ADS  Google Scholar 

  40. Y. Han and F. Liu, Front. Phys. China, 2008, 3(1): 41

    Article  ADS  Google Scholar 

  41. E. Ogando, N. Zabala, and M. J. Puska, Nanotechnology 2002, 13: 363

    Article  ADS  Google Scholar 

  42. R. T. Senger, S. Dag, and S. Ciraci, Phys. Rev. Lett., 2004, 93: 196807

    Article  ADS  Google Scholar 

  43. J.-S. Lin, S.-P. Ju, and W.-J. Lee, Phys. Rev. B, 2005, 72: 085448

    Article  ADS  Google Scholar 

  44. I. Lopez-Salido, D. C. Lim, and Y. D. Kim, Surf. Sci., 2005, 588: 6

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y. A jellium model analysis on quantum growth of metal nanowires and nanomesas. Front. Phys. China 3, 436–443 (2008). https://doi.org/10.1007/s11467-008-0037-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-008-0037-8

Keywords

PACS numbers

Navigation