Skip to main content
Log in

A successive approximation method for quantum separability

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

Determining whether a quantum state is separable or inseparable (entangled) is a problem of fundamental importance in quantum science and has attracted much attention since its first recognition by Einstein, Podolsky and Rosen [Phys. Rev., 1935, 47: 777] and Schrödinger [Naturwissenschaften, 1935, 23: 807–812, 823–828, 844–849]. In this paper, we propose a successive approximation method (SAM) for this problem, which approximates a given quantum state by a so-called separable state: if the given states is separable, this method finds its rank-one components and the associated weights; otherwise, this method finds the distance between the given state to the set of separable states, which gives information about the degree of entanglement in the system. The key task per iteration is to find a feasible descent direction, which is equivalent to finding the largest M-eigenvalue of a fourth-order tensor. We give a direct method for this problem when the dimension of the tensor is 2 and a heuristic cross-hill method for cases of high dimension. Some numerical results and experiences are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bazarra M S, Sherali H D, Shetty C M. Nonlinear Programming: Theory and Algorithms. New York: John Wiley and Sons, Inc, 1993

    Google Scholar 

  2. Cox D, Little J, O’Shea D. Using Algebraic Geometry. New York: Springer-Verlag, 1998

    Book  MATH  Google Scholar 

  3. Dahl D, Leinass J M, Myrheim J, Ovrum E. A tensor product matrix approximation problem in quantum physics. Linear Algebra Appl, 2007, 420: 711–725

    Article  MathSciNet  MATH  Google Scholar 

  4. Doherty A C, Parrilo P A, Spedalieri F M. Distinguishing separable and entangled states. Phys. Rev. Lett., 2002, 88: 187904

    Article  Google Scholar 

  5. Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? Phys Rev, 1935, 47: 777

    Article  MATH  Google Scholar 

  6. Gurvits L. Classical deterministic complexity of Edmonds’ problem and quantum entanglement. IN: Proceedings of the Thirty-Fifth ACM Symposium on Theory of Computing. New York: ACM, 2003, 10–19

    Google Scholar 

  7. Han D, Dai H, Qi L. Conditions for strong ellipticity of anisotropic elastic materials. J Elasticity, 2009, 97: 1–13

    Article  MathSciNet  MATH  Google Scholar 

  8. Han D, Qi L, Wu Ed. Extreme diffusion values for non-Gaussian diffusions. Optim Methods Softw, 2008, 23: 703–716

    Article  MathSciNet  MATH  Google Scholar 

  9. Horodecki M, Horodecki P, Horodecki R. Separability of mixed states: Necessary and sufficient conditions. Phys Lett A, 1996, 223: 1–8

    Article  MathSciNet  MATH  Google Scholar 

  10. Ioannou L M, Travaglione B C, Cheung D, Ekert K. Improved algorithm for quantum separability and entanglement detection. Phys Rev A, 2004, 70: 060303

    Article  Google Scholar 

  11. Ling C, Nie J, Qi L, Ye Y. Bi-quadratic optimization over unit spheres and semidefinite programming relaxations. SIAM J Optim, 2009, 20: 1286–1310

    Article  MathSciNet  MATH  Google Scholar 

  12. Ng M, Qi L, Zhou G. Finding the largest eigenvalue of a non-negative tensor. SIAM J Matrix Anal Appl, 2009, 31: 1090–1099

    Article  MathSciNet  Google Scholar 

  13. Nielsen M N, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  14. Peres A. Separability criterion for density matrices. Phys Rev Lett, 1996, 77: 1413–1415

    Article  MathSciNet  MATH  Google Scholar 

  15. Pittenger A O, Rubin M H. Geometry of entanglement witness and local detection of entanglement. Phys Rev A, 2003, 67: 012327

    Article  Google Scholar 

  16. Qi L. Rank and eigenvalues of a supersymmetric tensor, a multivariate homogeneous polynomial and an algebraic surface defined by them. J Symbolic Comput, 2006, 41: 1309–1327

    Article  MathSciNet  MATH  Google Scholar 

  17. Qi L. Eigenvalues and invariants of tensors. J Math Anal Appl, 2007, 325: 1363–1377

    Article  MathSciNet  MATH  Google Scholar 

  18. Qi L, Dai H, Han D. Conditions for strong ellipticity. Front Math China, 2009, 4: 349–364

    Article  MathSciNet  MATH  Google Scholar 

  19. Qi L, Wang F, Wang Y. A global homogenous polynomial optimization problem over the unit sphere. Working Paper, Department of Applied Mathematics, The Hong Kong Polytechnic University, 2007

    Google Scholar 

  20. Qi L, Wang F, Wang Y. Z-eigenvalue methods for a global polynomial optimization problem. Math Program, 2009, 118: 301–316

    Article  MathSciNet  MATH  Google Scholar 

  21. Qi L, Wang Y, Wu Ed. D-eigenvalues of diffusion kurtosis tensors. J Comp Appl Math, 2008, 221: 150–157

    Article  MathSciNet  MATH  Google Scholar 

  22. Schrödinger E. Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften, 1935, 23: 807–812, 823–828, 844–849

    Article  Google Scholar 

  23. Verstraete F, Dehaene J, De Moor B. On the geometry of entangled states. J Mod Opt, 2002, 49: 1277–1287

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deren Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, D., Qi, L. A successive approximation method for quantum separability. Front. Math. China 8, 1275–1293 (2013). https://doi.org/10.1007/s11464-013-0274-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-013-0274-1

Keywords

MSC

Navigation