Skip to main content
Log in

Address-crossing digital information processing on a self-aggregatable cyclodextrin derivative based nanosystem

  • Research Article
  • Published:
Frontiers of Chemistry in China

Abstract

A novel pH-responsive and photo-isomerizing β-cyclodextrin (β-CD) derivative DACD was synthesized and fully characterized by 1H-NMR, 13C-NMR, and HRMS. At room temperature, this compound would self-assemble to layer aggregations in an aqueous environment. The aggregated state can reversibly switch to a monomeric solution state attributed to the hydrophobic competition of an additional substance to the β-CD cavity. This self-aggregatable cyclodextrin derivative based nanosystem functioned by switching between the aggregated and monomeric state. An effective address-crossing digital information system, in response to pH and UV stimuli, was demonstrated based on such mechanism. This chemical system, capable of data memories and logic functions in nanoscale, can mimic the functions of pointer-based data processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F., Angew. Chem. Int. Ed. 2000, 39, 3348

    Article  CAS  Google Scholar 

  2. Tian, H.; Wang, Q. C., Chem. Soc. Rev. 2006, 35, 361

    Article  CAS  Google Scholar 

  3. Kay, E. R.; Leigh, D. A.; Zerbetto, F., Angew. Chem. Int. Ed. 2007, 46, 72

    Article  CAS  Google Scholar 

  4. Klotz, E. J. F.; Claridge, T. D.W.; Anderson, H. L., J. Am. Chem. Soc. 2006, 128, 15374

    Article  CAS  Google Scholar 

  5. Green, J. E.; Choi, J.W.; Boukai, A.; Bunimovich, Y.; Johnston-Halperin, E.; Delonno, E.; Luo, Y.; Sheriff, B. A.; Xu, K.; Shin, Y. S., Tseng, H. R.; Stoddart, J. F.; Heath, J. R., Nature 2007, 445, 414

    Article  CAS  Google Scholar 

  6. Niazov, T.; Baron, R.; Katz, E.; Lioubashevski, O.; Willner, I., Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 17160

    Article  CAS  Google Scholar 

  7. Raymo, F. M., Adv. Mater. 2002, 14, 401

    Article  CAS  Google Scholar 

  8. Ballardini, R.; Ceroni, P.; Credi, A.; Gandolfi, M. T.; Maestri, M.; Semararo, M.; Venturi, M.; Balzani, V., Adv. Funct. Mater. 2007, 17, 740

    Article  CAS  Google Scholar 

  9. Liu, Y.; Chen, Y., Acc. Chem. Res. 2006, 39, 681

    Article  CAS  Google Scholar 

  10. Wenz, G.; Han, B. H.; Müller, A., Chem. Rev. 2006, 106, 782

    Article  CAS  Google Scholar 

  11. Ma, X.; Qu, D. H.; Ji, F. Y.; Wang, Q. C.; Zhu, L. L.; Xu, Y.; Tian, H., Chem. Commun. 2007, 1409

  12. Wang Y.; Ma N.; Wang Z.; Zhang, X., Angew. Chem. Int. Ed. 2007, 46, 2823

    Article  CAS  Google Scholar 

  13. Zhou Y. C.; Wu H.; Qu L.; Zhang D. Q.; Zhu D. B., J. Phys. Chem. B 2006, 110, 15676

    Article  CAS  Google Scholar 

  14. Browne W. R.; Pollard M. M.; de Lange B.; Meetsma A.; Feringa B. L., J. Am. Chem. Soc. 2006, 128, 12412

    Article  CAS  Google Scholar 

  15. Tian, H.; Qin, B.; Yao, R. X.; Zhao, X. L.; Yang, S. J., Adv. Mater. 2003, 15, 2104

    Article  CAS  Google Scholar 

  16. Gupta T.; van der Boom M. E., Angew. Chem. Int. Ed. 2008, 47, 5322

    Article  CAS  Google Scholar 

  17. Qu, D. H.; Ji, F. Y.; Wang, Q. C.; Tian, H., Adv. Mater. 2006, 18, 2035

    Article  CAS  Google Scholar 

  18. Qu, D. H.; Wang, Q. C.; Tian, H., Angew. Chem., Int. Ed. 2005, 44, 5296

    Article  CAS  Google Scholar 

  19. Margulies, D.; Melman, G.; Shanzer, A., J. Am. Chem. Soc. 2006, 128, 4865

    Article  CAS  Google Scholar 

  20. Guo, Z. Q.; Zhu, W. H.; Shen, L. J.; Tian, H., Angew. Chem. Int. Ed. 2007, 46, 5549

    Article  CAS  Google Scholar 

  21. Strack, G.; Ornatska, M.; Pita, M.; Katz, E., J. Am. Chem. Soc. 2008, 130, 4234

    Article  CAS  Google Scholar 

  22. Andréasson, J.; Straight S. D.; Bandyopadhyay, S.; Mitchell, R. H.; Moore, T. A.; Moore, A. L.; Gust, D., Angew. Chem., Int. Ed. 2007, 46, 958

    Article  Google Scholar 

  23. Ueno A.; Kuwabara T.; Nakamura A.; Toda F., Nature 1992, 356, 136

    Article  CAS  Google Scholar 

  24. Zhang D.; Su J.-H.; Ma X.; Tian H., Tetrahedron, 2008, 64, 8515

    Article  CAS  Google Scholar 

  25. Trans-to-cis photoisomerization of azobenzene or stilbene compounds are generally accompanied by a decrease in maximum absorption. For example: Qu, D. H.; Wang, Q. C.; Ren, J.; Tian, H., Org. Lett. 2004, 6, 2085

    Article  CAS  Google Scholar 

  26. Wang, Q. C.; Qu, D. H.; Ren, J.; Chen, K.C.; Tian, H., Angew. Chem. Int. Ed. 2004, 43, 2661

    Article  CAS  Google Scholar 

  27. Pérez, E. M.; Dryden, D. T. F.; Leigh, D. A.; Teobaldi, G.; Zerbetto, F. A., J. Am. Chem. Soc. 2004, 126, 12210

    Article  Google Scholar 

  28. Zhu, L.L.; Li X.; Ji, F. Y.; Ma, X.; Wang, Q. C.; Tian, H., Langmuir 2009, 25, 3482

    Article  CAS  Google Scholar 

  29. Berova, N.; Bari, L. D.; Pescitelli, G., Chem. Soc. Rev., 2007, 36, 914

    Article  CAS  Google Scholar 

  30. Ma, X.; Wang, Q. C.; Qu, D. H.; Xu, Y.; Ji, F. Y.; Tian, H., Adv. Funct. Mater. 2007, 17, 829

    Article  CAS  Google Scholar 

  31. Kodaka, M., J. Phys. Chem. A 1998, 102, 8101

    Article  CAS  Google Scholar 

  32. Zhu, L.L.; Ma, X.; Ji, F. Y.; Wang, Q. C.; Tian, H., Chem. Eur. J. 2007, 13, 9216

    Article  CAS  Google Scholar 

  33. Grabowski Z. R.; Rotkiewicz K.; Rettig W., Chem. Rev. 2003, 103, 3899

    Article  Google Scholar 

  34. Plauger P. J.; Brodie J., ANSI and ISO Standard C Programmer’s Reference Microsoft Press, 1992

  35. H. S. Byun; N. Zhong; R. Bittman, Org. Synth. 2000, 77, 225

    CAS  Google Scholar 

  36. H. A. Benesi; J. H. Hildebrand, J. Am. Chem. Soc. 1949, 71, 2703

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Tian.

About this article

Cite this article

Zhu, L., Ji, F., Wang, Q. et al. Address-crossing digital information processing on a self-aggregatable cyclodextrin derivative based nanosystem. Front. Chem. China 4, 278–291 (2009). https://doi.org/10.1007/s11458-009-0088-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11458-009-0088-6

Keywords

Navigation