Skip to main content

Advertisement

Log in

Intelligent model selection with updating parameters during staged excavation using optimization method

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Various constitutive models have been proposed, and previous studies focused on identifying parameters of specified models. To develop the smart construction, this paper proposes a novel optimization-based intelligent model selection procedure in which parameter identification is also performed during staged excavation. To conduct the model selection, a database of seven constitutive models accounting for isotropic or anisotropic yield surface, isotropic or anisotropic elasticity, or small strain stiffness for clayey soils is established, with each model numbered and deemed as one additional parameter for optimization. A newly developed real-coded genetic algorithm is adopted to evaluate the performance of simulation against field measurement. As the process of optimization goes on, the soil model exhibiting good performance during simulation survives from the database and model parameters are also optimized. For each excavation stage, with the selected model and optimized parameters, wall deflection and ground surface settlement of the subsequent unexcavated stage are predicted. The proposed procedure is repeated until the entire excavation is finished. This proposed procedure is applied to a real staged excavation with field data, which demonstrates its effectiveness and efficiency in engineering practice with highlighting the importance of anisotropic elasticity and small strain stiffness in simulating excavation. All results demonstrate that the current study has both academic significance and practical significance in providing an efficient and effective approach of adaptive optimization-based model selection with parameters updating in engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Allman M, Atkinson J (1992) Mechanical properties of reconstituted Bothkennar soil. Géotechnique 42(2):289–301

    Google Scholar 

  2. Beck JL, Yuen K-V (2004) Model selection using response measurements: Bayesian probabilistic approach. J Eng Mech 130(2):192–203

    Google Scholar 

  3. Benz T (2007) Small-strain stiffness of soils and its numerical consequences, vol 5. Univ. Stuttgart, Inst. f. Geotechnik, Stuttgarts

  4. Calvello M, Finno RJ (2004) Selecting parameters to optimize in model calibration by inverse analysis. Comput Geotech 31(5):410–424. https://doi.org/10.1016/j.compgeo.2004.03.004

    Article  Google Scholar 

  5. Cao Z, Wang Y (2014) Bayesian model comparison and selection of spatial correlation functions for soil parameters. Struct Saf 49:10–17

    Google Scholar 

  6. de Bragança Pereira CA, Stern JM (2001) Model selection: full Bayesian approach. Environmetrics 12(6):559–568

    Google Scholar 

  7. Finno RJ, Calvello M (2005) Supported excavations: observational method and inverse modeling. J Geotech Geoenviron Eng 131(7):826–836

    Google Scholar 

  8. Franzius J, Potts D, Burland J (2005) The influence of soil anisotropy and K 0 on ground surface movements resulting from tunnel excavation. Géotechnique 55(3):189–199

    Google Scholar 

  9. Graham J, Houlsby G (1983) Anisotropic elasticity of a natural clay. Geotechnique 33(2):165–180

    Google Scholar 

  10. Hardin BO, Drnevich VP (1972) Shear modulus and damping in soils: measurement and parameter effects (Terzaghi Leture). J Soil Mech Found Div 98(6):603–624

    Google Scholar 

  11. Hattab M, Hicher P-Y (2004) Dilating behaviour of overconsolidated clay. Soils Found 44(4):27–40

    Google Scholar 

  12. Hicher P-Y, Chang CS (2005) Evaluation of two homogenization techniques for modeling the elastic behavior of granular materials. J Eng Mech 131(11):1184–1194

    Google Scholar 

  13. Holland J (1992) Adaptation in natural and artificial systems. MIT Press, Cambridge

    Google Scholar 

  14. Hoque E, Tatsuoka F (1998) Anisotropy in elastic deformation of granular materials. Soils Found 38(1):163–179

    Google Scholar 

  15. Hou Y, Wang J, Zhang L (2009) Finite-element modeling of a complex deep excavation in Shanghai. Acta Geotech 4(1):7–16

    Google Scholar 

  16. Hsiao EC, Schuster M, Juang CH, Kung GT (2008) Reliability analysis and updating of excavation-induced ground settlement for building serviceability assessment. J Geotech Geoenviron Eng 134(10):1448–1458

    Google Scholar 

  17. Huang Z, Zhang L, Cheng S, Zhang J, Xia X (2014) Back-analysis and parameter identification for deep excavation based on pareto multiobjective optimization. J Aerosp Eng 28(6):A4014007

    Google Scholar 

  18. Jin Y-F, Yin Z-Y, Shen S-L, Hicher P-Y (2016) Selection of sand models and identification of parameters using an enhanced genetic algorithm. Int J Numer Anal Methods Geomech 40(8):1219–1240. https://doi.org/10.1002/nag.2487

    Article  Google Scholar 

  19. Jin Y-F, Yin Z-Y, Shen S-L, Hicher P-Y (2016) Investigation into MOGA for identifying parameters of a critical-state-based sand model and parameters correlation by factor analysis. Acta Geotech 11(5):1131–1145. https://doi.org/10.1007/s11440-015-0425-5

    Article  Google Scholar 

  20. Jin Y-F, Wu Z-X, Yin Z-Y, Shen JS (2017) Estimation of critical state-related formula in advanced constitutive modeling of granular material. Acta Geotech. https://doi.org/10.1007/s11440-017-0586-5

    Article  Google Scholar 

  21. Jin Y-F, Yin Z-Y, Riou Y, Hicher P-Y (2017) Identifying creep and destructuration related soil parameters by optimization methods. KSCE J Civ Eng 21(4):1123–1134. https://doi.org/10.1007/s12205-016-0378-8

    Article  Google Scholar 

  22. Jin Y-F, Yin Z-Y, Shen S-L, Zhang D-M (2017) A new hybrid real-coded genetic algorithm and its application to parameters identification of soils. Inverse Problems Sci Eng 25(9):1343–1366. https://doi.org/10.1080/17415977.2016.1259315

    Article  MathSciNet  MATH  Google Scholar 

  23. Jin Y-F, Yin Z-Y, Zhou W-H, Huang H-W (2019) Multi-objective optimization-based updating of predictions during excavation. Eng Appl Artif Intell 78:102–123. https://doi.org/10.1016/j.engappai.2018.11.002

    Article  Google Scholar 

  24. Juang C, Hsein Luo Z, Atamturktur S, Huang H (2012) Bayesian updating of soil parameters for braced excavations using field observations. J Geotech Geoenviron Eng 139(3):395–406

    Google Scholar 

  25. Kung TC, Hsiao CL, Junag CH (2007) Evaluation of a simplified small-strain soil model for analysis of excavation-induced movements. Can Geotech J 44(6):726–736

    Google Scholar 

  26. Kung TC, Ou CY, Juang CH (2009) Modeling small-strain behavior of Taipei clays for finite element analysis of braced excavations. Comput Geotech 36(1–2):304–319

    Google Scholar 

  27. Leoni M, Karstunen M, Vermeer P, MRTN-CT E (2009) Anisotropic creep model for soft soils. Geotechnique 58(3):215–266

    Google Scholar 

  28. Levasseur S, Malécot Y, Boulon M, Flavigny E (2008) Soil parameter identification using a genetic algorithm. Int J Numer Anal Methods Geomech 32(2):189–213. https://doi.org/10.1002/nag.614

    Article  MATH  Google Scholar 

  29. Lim A, Ou CY, Hsieh PG (2010) Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions. J Geoengin 5:9–20

    Google Scholar 

  30. Ou C-Y, Liao J-T, Lin H-D (1998) Performance of diaphragm wall constructed using top–down method. J Geotech Geoenviron Eng 124(9):798–808

    Google Scholar 

  31. Ou C-Y, Shiau B-Y, Wang I-W (2000) Three-dimensional deformation behavior of the Taipei National Enterprise Center (TNEC) excavation case history. Can Geotech J 37(2):438–448

    Google Scholar 

  32. Poles S, Fu Y, Rigoni E (2009) The effect of initial population sampling on the convergence of multi-objective genetic algorithms. Multiobjective programming and goal programming. Springer, Berlin, pp 123–133

    Google Scholar 

  33. Qi X-H, Zhou W-H (2017) An efficient probabilistic back-analysis method for braced excavations using wall deflection data at multiple points. Comput Geotech 85:186–198

    Google Scholar 

  34. Roscoe KH, Burland J (1968) On the generalized stress-strain behaviour of wet clay. In: Paper presented at the engineering plasticity, Cambridge, UK

  35. Schädlich B, Schweiger HF (2012) Influence of anisotropic small strain stiffness on the deformation behavior of geotechnical structures. Int J Geomech 13(6):861–868

    Google Scholar 

  36. Shen S-L, Xu Y-S (2011) Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Can Geotech J 48(9):1378–1392

    Google Scholar 

  37. Shen S-L, Wu H-N, Cui Y-J, Yin Z-Y (2014) Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai. Tunn Undergr Sp Technol 40:309–323

    Google Scholar 

  38. Shen S, Wang Z, Cheng W (2017) Estimation of lateral displacement induced by jet grouting in clayey soils. Géotechnique 67(7):621–630

    Google Scholar 

  39. Sheng D, Sloan S, Yu H (2000) Aspects of finite element implementation of critical state models. Comput Mech 26(2):185–196

    MATH  Google Scholar 

  40. Sobol IM (1967) On the distribution of points in a cube and the approximate evaluation of integrals. USSR Comput Math Math Phys 7(4):86–112

    MathSciNet  MATH  Google Scholar 

  41. Tan F, Zhou W-H, Yuen K-V (2016) Modeling the soil water retention properties of same-textured soils with different initial void ratios. J Hydrol 542:731–743

    Google Scholar 

  42. Tan F, Zhou WH, Yuen KV (2018) Effect of loading duration on uncertainty in creep analysis of clay. Int J Numer Anal Methods Geomech 42(11):1235–1254

    Google Scholar 

  43. Teng FC, Ou CY, Hsieh PG (2014) Measurements and numerical simulations of inherent stiffness anisotropy in soft Taipei clay. J Geotech Geoenviron Eng 140(1):237–250

    Google Scholar 

  44. Vucetic M, Dobry R (1991) Effect of soil plasticity on cyclic response. J Geotech Eng 117(1):89–107

    Google Scholar 

  45. Wheeler SJ, Näätänen A, Karstunen M, Lojander M (2003) An anisotropic elastoplastic model for soft clays. Can Geotech J 40(2):403–418

    Google Scholar 

  46. Xu Y-S, Shen S-L, Ren D-J, Wu H-N (2016) Analysis of factors in land subsidence in Shanghai: a view based on a strategic environmental assessment. Sustainability 8(6):573

    Google Scholar 

  47. Yao Y, Lu D, Zhou A, Zou B (2004) Generalized non-linear strength theory and transformed stress space. Sci China Ser E Technol Sci 47(6):691–709

    MATH  Google Scholar 

  48. Yao Y, Sun D, Matsuoka H (2008) A unified constitutive model for both clay and sand with hardening parameter independent on stress path. Comput Geotech 35(2):210–222

    Google Scholar 

  49. Yao Y, Hou W, Zhou A (2009) UH model: three-dimensional unified hardening model for overconsolidated clays. Geotechnique 59(5):451–469

    Google Scholar 

  50. Yin ZY, Chang CS, Karstunen M, Hicher PY (2010) An anisotropic elastic-viscoplastic model for soft clays. Int J Solids Struct 47(5):665–677

    MATH  Google Scholar 

  51. Yin ZY, Karstunen M, Chang CS, Koskinen M, Lojander M (2011) Modeling time-dependent behavior of soft sensitive clay. J Geotech Geoenviron Eng 137(11):1103–1113. https://doi.org/10.1061/(asce)gt.1943-5606.0000527

    Article  Google Scholar 

  52. Yin Z-Y, Xu Q, Hicher P-Y (2013) A simple critical-state-based double-yield-surface model for clay behavior under complex loading. Acta Geotech 8(5):509–523

    Google Scholar 

  53. Yin Z-Y, Jin Y-F, Shen S-L, Huang H-W (2016) An efficient optimization method for identifying parameters of soft structured clay by an enhanced genetic algorithm and elastic–viscoplastic model. Acta Geotech. https://doi.org/10.1007/s11440-016-0486-0

    Article  Google Scholar 

  54. Yin Z-Y, Jin Y-F, Shen JS, Hicher P-Y (2017) Optimization techniques for identifying soil parameters in geotechnical engineering: comparative study and enhancement. Int J Numer Anal Methods Geomech. https://doi.org/10.1002/nag.2714

    Article  Google Scholar 

  55. Yin Z-Y, Gu X-Q, Jin Y-F (2017) Small strain stiffness of soils. Tongji University Press, Shanghai

    Google Scholar 

  56. Yuen K-V (2010) Recent developments of Bayesian model class selection and applications in civil engineering. Struct Saf 32(5):338–346

    Google Scholar 

  57. Zhang R, Mahadevan S (2000) Model uncertainty and Bayesian updating in reliability-based inspection. Struct Saf 22(2):145–160

    Google Scholar 

  58. Zhang J, Zhang LM, Tang WH (2009) Bayesian framework for characterizing geotechnical model uncertainty. J Geotech Geoenviron Eng 135(7):932–940. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000018

    Article  Google Scholar 

  59. Zhang L, Zuo Z, Ye G, Jeng D, Wang J (2013) Probabilistic parameter estimation and predictive uncertainty based on field measurements for unsaturated soil slope. Comput Geotech 48:72–81

    Google Scholar 

  60. Zhao B, Zhang L, Jeng D, Wang J, Chen J (2015) Inverse analysis of deep excavation using differential evolution algorithm. Int J Numer Anal Methods Geomech 39(2):115–134

    Google Scholar 

  61. Zhou W-H, Tan F, Yuen K-V (2018) Model updating and uncertainty analysis for creep behavior of soft soil. Comput Geotech 100:135–143. https://doi.org/10.1016/j.compgeo.2018.04.006

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Research Grants Council (RGC) of Hong Kong Special Administrative Region Government (HKSARG) of China (Grant No. PolyU R5037-18F, 15209119); Joint research project between SiChuan Province and National Universities funded by Science & Technology Department of Sichuan Province (No. 2019YFSY0015), and Open research grant of MOE Key Laboratory of High-speed Railway Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Yu Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Derivation of initial reference shear modulus and apparent swelling index

Appendix A: Derivation of initial reference shear modulus and apparent swelling index

Based on Eq. (17), the shear modulus at 0.1% of strain and that at any strain level is defined as:

$$ \left\{ {\begin{array}{*{20}l} {G_{0.1\% } = \frac{{G_{0} }}{{\left( {1 + {{0.001} \mathord{\left/ {\vphantom {{0.001} {\gamma_{\text{ref}} }}} \right. \kern-0pt} {\gamma_{\text{ref}} }}} \right)^{2} }}} \hfill \\ {G = \frac{{G_{0} }}{{\left( {1 + {\gamma \mathord{\left/ {\vphantom {\gamma {\gamma_{\text{ref}} }}} \right. \kern-0pt} {\gamma_{\text{ref}} }}} \right)^{2} }}} \hfill \\ \end{array} } \right. $$
(27)

According to the elasticity, the corresponding bulk modulus at 0.1% of strain and that at any strain level is obtained:

$$ \left\{ {\begin{array}{*{20}l} {K_{0.1\% } = \frac{{2\left( {1 + \upsilon } \right)}}{{3\left( {1 - 2\upsilon } \right)}}G_{0.1\% } = \frac{{2\left( {1 + \upsilon } \right)}}{{3\left( {1 - 2\upsilon } \right)}}\frac{{G_{0} }}{{\left( {1 + {{0.001} \mathord{\left/ {\vphantom {{0.001} {\gamma_{ref} }}} \right. \kern-0pt} {\gamma_{ref} }}} \right)^{2} }}} \hfill \\ {K = \frac{{2\left( {1 + \upsilon } \right)}}{{3\left( {1 - 2\upsilon } \right)}}G = \frac{{2\left( {1 + \upsilon } \right)}}{{3\left( {1 - 2\upsilon } \right)}}\frac{{G_{0} }}{{\left( {1 + {\gamma \mathord{\left/ {\vphantom {\gamma {\gamma_{ref} }}} \right. \kern-0pt} {\gamma_{ref} }}} \right)^{2} }}} \hfill \\ \end{array} } \right. $$
(28)

Assuming the ordinary swelling index κ is adopted to computer the K0.1% and a modified swelling index κs corresponding to any strain level is adopted to computer K

$$ \left\{ {\begin{array}{*{20}l} {K_{0.1\% } = \frac{{\left( {1 + e_{0} } \right)}}{\kappa }p^{{\prime }} } \hfill \\ {K = \frac{{\left( {1 + e_{0} } \right)}}{{\kappa_{s} }}p^{\prime}} \hfill \\ \end{array} } \right. $$
(29)

Combining Eqs. (28) and (29), and noting a reference value pat for replacing p′, the initial reference shear modulus Gref0 for replacing G0 can be defined as:

$$ \left\{ {\begin{array}{*{20}l} {G_{{{\text{ref}}0}} = \frac{{3\left( {1 - 2\upsilon } \right)\left( {1 + e_{0} } \right)}}{{2\left( {1 + \upsilon } \right)}}\left( {1 + {{0.001} \mathord{\left/ {\vphantom {{0.001} {\gamma_{\text{ref}} }}} \right. \kern-0pt} {\gamma_{\text{ref}} }}} \right)^{2} \frac{{p_{\text{at}} }}{\kappa }} \hfill \\ {G_{{{\text{ref}}0}} = \frac{{3\left( {1 - 2\upsilon } \right)\left( {1 + e_{0} } \right)}}{{2\left( {1 + \upsilon } \right)}}\left( {1 + {\gamma \mathord{\left/ {\vphantom {\gamma {\gamma_{\text{ref}} }}} \right. \kern-0pt} {\gamma_{\text{ref}} }}} \right)^{2} \frac{{p_{\text{at}} }}{{\kappa_{s} }}} \hfill \\ \end{array} } \right. $$
(30)

Adopting the \( \gamma_{\text{ref}} = {{7\varepsilon_{70} } \mathord{\left/ {\vphantom {{7\varepsilon_{70} } 3}} \right. \kern-0pt} 3} \) and adding a controlling factor of stiffness Prev (with Prev = 1 when loading and Prev = 2 when unloading), Eq. (30) can be expressed as:

$$ \left\{ {\begin{array}{*{20}l} {G_{{{\text{ref}}0}} = \frac{{3\left( {1 - 2\upsilon } \right)\left( {1 + e_{0} } \right)}}{{2\left( {1 + \upsilon } \right)}}\left( {1 + P_{\text{rev}} \frac{3}{7}\left| {\frac{0.001}{{\varepsilon_{70} }}} \right|} \right)^{2} \frac{{p_{\text{at}} }}{\kappa }} \hfill \\ {G_{{{\text{ref}}0}} = \frac{{3\left( {1 - 2\upsilon } \right)\left( {1 + e_{0} } \right)}}{{2\left( {1 + \upsilon } \right)}}\left( {1 + P_{\text{rev}} \frac{3}{7}\left| {\frac{{\varepsilon_{\text{eq}}^{*} }}{{\varepsilon_{70} }}} \right|} \right)^{2} \frac{{p_{\text{at}} }}{{\kappa_{s} }}} \hfill \\ \end{array} } \right. $$
(31)

From the second equation in Eq. (31), the modified swelling index κs corresponding to any average equivalent strain level can be obtained as:

$$ \kappa_{\text{s}} = \frac{{3\left( {1 - 2\upsilon } \right)\left( {1 + e_{0} } \right)}}{{2\left( {1 + \upsilon } \right)}}\left( {1 + P_{\text{rev}} \frac{3}{7}\left| {\frac{{\varepsilon_{\text{eq}}^{*} }}{{\varepsilon_{70} }}} \right|} \right)^{2} \frac{{p_{\text{at}} }}{{G_{{{\text{ref}}0}} }} $$
(32)

This equation suggests that the apparent swelling index increases (corresponding to the decrease in shear modulus and bulk modulus) with the increase in average equivalent strain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, YF., Yin, ZY., Zhou, WH. et al. Intelligent model selection with updating parameters during staged excavation using optimization method. Acta Geotech. 15, 2473–2491 (2020). https://doi.org/10.1007/s11440-020-00936-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-020-00936-6

Keywords

Navigation