Skip to main content
Log in

An overview of the switching parameter variation of RRAM

  • Review
  • Electrical Engineering
  • Published:
Chinese Science Bulletin

Abstract

Resistive random access memory (RRAM) has been considered as one of the most promising candidates for next-generation nonvolatile memory, due to its advantages of simple device structure, excellent scalability, fast operation speed and low power consumption. Deeply understanding the physical mechanism and effectively controlling the statistical variation of switching parameters are the basis of fostering RRAM into commercial application. In this paper, based on the deep understanding on the mechanism of the formation and rupture of conductive filament, we summarize the methods of analyzing and modeling the statistics of switching parameters such as SET/RESET voltage, current, speed or time. Then, we analyze the distributions of switching parameters and the influencing factors. Additionally, we also sum up the analytical model of resistive switching statistics composed of the cell-based percolation model and SET/RESET switching dynamics. The results of the model can successfully explain the experimental distributions of switching parameters of the NiO- and HfO2-based RRAM devices. The model also provides theoretical guide on how to improve the uniformity and reliability such as disturb immunity. Finally, some experimental approaches to improve the uniformity of switching parameters are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Waser R, Dittmann R, Staikov G et al (2009) Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv Mater 21:2632–2663

    Google Scholar 

  2. Waser R, Aono M (2007) Nanoionics-based resistive switching memories. Nat Mater 6:833–840

    Google Scholar 

  3. Tang D, Li YH, Zhang GH et al (2013) Single event upset sensitivity of 45 nm FDSOI and SOI FinFET SRAM. Sci China Technol Sci 56:780–785

    Google Scholar 

  4. Sun QP, Aslan A, Li MP et al (2014) Effects of grain size on phase transition behavior of nanocrystalline shape memory alloys. Sci China Technol Sci 57:671–679

    Google Scholar 

  5. Wu GN, Cao KJ, Luo Y et al (2012) Partial discharge characteristics of interturn insulation used for inverter-fed traction motor under bipolar impulses. Sci China Technol Sci 55:2346–2354

    Google Scholar 

  6. Sawa A (2008) Resistive switching in transition metal oxides. Mater Today 11:28–36

    Google Scholar 

  7. Xiao X, Li ZY, Chu T et al (2013) Development of silicon photonic devices for optical interconnects. Sci China Technol Sci 56:586–593

    Google Scholar 

  8. Zhou GZ, Wang YX, Liu C et al (2013) On ferroelectric domain polarization switching mechanism subject to an external electric field by simulations with the phase-field method. Sci China Technol Sci 56:1129–1138

    Google Scholar 

  9. Yang JJ, Strukov DB, Stewart DR (2013) Memristive devices for computing. Nat Nanotechnol 8:13–24

    Google Scholar 

  10. Lin WP, Liu SJ, Gong T et al (2014) Polymer-based resistive memory materials and devices. Adv Mater 26:570–606

    Google Scholar 

  11. Lanza M (2014) A review on resistive switching in high-k dielectrics: a nanoscale point of view using conductive atomic force microscope. Materials 7:2155–2182

    Google Scholar 

  12. Pan F, Chen C, Wang ZS et al (2010) Nonvolatile resistive switching memories-characteristics, mechanisms and challenges. Prog Nat Sci Mater Int 20:1–15

    Google Scholar 

  13. Bao D (2009) Transition metal oxide thin films for nonvolatile resistive random access memory applications. J Ceram Soc Jpn 117:929–934

    Google Scholar 

  14. Zhu XJ, Shang J, Li RW (2012) Resistive switching effects in oxide sandwiched structures. Front Mater Sci 6:1–24

    Google Scholar 

  15. Prakash A, Jana D, Maikap S (2013) TaO x -based resistive switching memories: prospective and challenges. Nanoscale Res Lett 8:418

    Google Scholar 

  16. Tian XZ, Wang LF, Li XM et al (2013) Recent development of studies on the mechanism of resistive memories in several metal oxides. Sci China Phys Mech Astron 56:2361–2369

    Google Scholar 

  17. Zhang K, Long S, Liu Q et al (2011) Progress in rectifying-based RRAM passive crossbar array. Sci China Technol Sci 54:811–818

    Google Scholar 

  18. Shang DS, Sun JR, Shen BG et al (2013) Resistance switching in oxides with inhomogeneous conductivity. Chin Phys B 22:067202

    Google Scholar 

  19. Li Y, Long S, Liu Q et al (2011) An overview of resistive random access memory devices. Chin Sci Bull 56:3072–3078

    Google Scholar 

  20. Lee MJ, Lee CB, Lee D et al (2011) A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x /TaO2−x bilayer structures. Nat Mater 10:625–630

    Google Scholar 

  21. Lee HY, Chen PS, Wu TY et al (2009) HfO x bipolar resistive memory with robust endurance using AlCu as buffer electrode. IEEE Electron Device Lett 30:703–705

    Google Scholar 

  22. Zhao JW, Liu FJ, Sun J et al (2012) Low power consumption bipolar resistive switching characteristics of ZnO-based memory devices. Chin Opt Lett 10:013102

    Google Scholar 

  23. Bai Y, Wu HQ, Zhang Y et al (2013) Low power W:AlO x /WO x bilayer resistive switching structure based on conductive filament formation and rupture mechanism. Appl Phys Lett 102:173503

    Google Scholar 

  24. Zhang LJ, Huang R, Gao DJ et al (2009) Unipolar resistive switch based on silicon monoxide realized by CMOS technology. IEEE Electron Device Lett 30:870–872

    Google Scholar 

  25. Huang R, Zhang LJ, Gao DJ et al (2011) Resistive switching of silicon-rich-oxide featuring high compatibility with CMOS technology for 3D stackable and embedded applications. Appl Phys A 102:927–931

    Google Scholar 

  26. Guan XM, Yu SM, Wong HSP (2012) On the switching parameter variation of metal-oxide RRAM-part I: physical modeling and simulation methodology. IEEE Trans Electron Devices 59:1172–1182

    Google Scholar 

  27. Long SB, Cagli C, Ielmini D et al (2012) Analysis and modeling of resistive switching statistics. J Appl Phys 111:074508

    Google Scholar 

  28. Long SB, Liu M, Suñé J et al (2013) Compact analytical models for the SET and RESET switching statistics of RRAM inspired in the cell-based percolation model of gate dielectric breakdown. Proc Int Reliab Phys Symp 5A.6.1–5A.6.8

  29. Yang Y, Gao P, Gaba S et al (2012) Observation of conducting filament growth in nanoscale resistive memories. Nat Commun 3:732

    Google Scholar 

  30. Rozenberg MJ, Inoue IH, Sànchez MJ (2004) Nonvolatile memory with multilevel switching: a basic model. Phys Rev Lett 92:178302

    Google Scholar 

  31. Lee JS, Lee SB, Chang SH et al (2010) Scaling theory for unipolar resistance switching. Phys Rev Lett 105:205701

    Google Scholar 

  32. Lee HD, Magyari-Köpe B, Nishi Y (2010) Model of metallic filament formation and rupture in NiO for unipolar switching. Phys Rev B 81:193202

    Google Scholar 

  33. Chen B, Lu Y, Gao B et al (2011) Physical mechanisms of endurance degradation in TMO-RRAM. IEEE Int Electron Devices Meet Tech Dig 12.3.1–12.3.4

  34. Lu Y, Gao B, Fu Y et al (2012) A simplified model for resistive switching of oxide-based resistive random access memory devices. IEEE Electron Device Lett 33:306–308

    Google Scholar 

  35. Miranda EA, Walczyk C, Wenger C et al (2010) Model for the resistive switching effect in HfO2 MIM structures based on the transmission properties of narrow constrictions. IEEE Electron Device Lett 31:609–611

    Google Scholar 

  36. Miao F, Strachan JP, Yang JJ et al (2011) Anatomy of a nanoscale conduction channel reveals the mechanism of a high-performance memristor. Adv Mater 23:5633–5640

    Google Scholar 

  37. Syu YE, Chang TC, Tsai TM et al (2011) Redox reaction switching mechanism in RRAM device with Pt/CoSiO x /TiN structure. IEEE Electron Device Lett 32:545–547

    Google Scholar 

  38. Syu YE, Chang TC, Lou JH et al (2013) Atomic-level quantized reaction of HfO x memristor. Appl Phys Lett 102:172903

    Google Scholar 

  39. Chu TJ, Chang TC, Tsai TM et al (2013) Charge quantity influence on resistance switching characteristic during forming process. IEEE Electron Device Lett 34:502–504

    Google Scholar 

  40. Zhang L, Huang R, Hsu YY et al (2011) Statistical analysis of retention behavior and lifetime prediction of HfO x -based RRAM. Proc Int Reliab Phys Symp MY.8.1–MY.8.5

  41. Long SB, Cagli C, Ielmini D et al (2011) Reset statistics of NiO-based resistive switching memories. IEEE Electron Device Lett 32:1750–1752

    Google Scholar 

  42. Long SB, Lian XJ, Cagli C et al (2013) A model for the set statistics of RRAM inspired in the percolation model of oxide breakdown. IEEE Electron Device Lett 34:999–1001

    Google Scholar 

  43. Long SB, Lian XJ, Ye TC et al (2013) Cycle-to-cycle intrinsic RESET statistics in HfO2-based unipolar RRAM devices. IEEE Electron Device Lett 34:623–625

    Google Scholar 

  44. Yang XY, Long SB, Zhang KW et al (2013) Investigation on the RESET switching mechanism of bipolar Cu/HfO2/Pt RRAM devices with a statistical methodology. J Phys D Appl Phys 46:245107

    Google Scholar 

  45. Suñé J (2001) New physics-based analytic approach to the thin-oxide breakdown statistics. IEEE Electron Device Lett 22:296–298

    Google Scholar 

  46. Kozicki MN, Park M, Mitkova M (2005) Nanoscale memory elements based on solid-state electrolytes. IEEE Trans Nanotechnol 4:331–338

    Google Scholar 

  47. Guan W, Liu M, Long S et al (2008) On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt. Appl Phys Lett 93:223506

    Google Scholar 

  48. Seo S, Lee MJ, Seo DH et al (2004) Reproducible resistance switching in polycrystalline NiO films. Appl Phys Lett 85:5655–5657

    Google Scholar 

  49. Shang DS, Shi L, Sun JR et al (2011) Local resistance switching at grain and grain boundary surfaces of polycrystalline tungsten oxide films. Nanotechnology 22:254008

    Google Scholar 

  50. Lanza M, Bersuker G, Porti M et al (2012) Resistive switching in hafnium dioxide layers: local phenomenon at grain boundaries. Appl Phys Lett 101:193502

    Google Scholar 

  51. Lanza M, Zhang K, Porti M et al (2012) Grain boundaries as preferential sites for resistive switching in the HfO2 resistive random access memory structures. Appl Phys Lett 100:123508

    Google Scholar 

  52. Iglesias V, Lanza M, Porti M et al (2012) Nanoscale observations of resistive switching high and low conductivity states on TiN/HfO2/Pt structures. Microelectron Reliab 52:2110–2114

    Google Scholar 

  53. Szot K, Speier W, Bihlmayer G et al (2006) Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat Mater 5:312–320

    Google Scholar 

  54. Jin L, Zhang MH, Huo ZL et al (2012) Effect of high temperature annealing on the performance of MANOS charge trapping memory. Sci China Technol Sci 55:888–893

    Google Scholar 

  55. Yang XN, Zhang MH, Wang Y et al (2012) Analyzing trap generation in silicon-nanocrystal memory devices using capacitance and current measurement. Sci China Technol Sci 55:588–593

    Google Scholar 

  56. Long S, Lian XJ, Cagli C et al (2013) Quantum-size effects in hafnium-oxide resistive switching. Appl Phys Lett 102:183505

    Google Scholar 

  57. Conde A, Martínez C, Jiménez D et al (2012) Modeling the breakdown statistics of Al2O3/HfO2 nanolaminates grown by atomic layer-deposition. Solid State Electron 71:48–52

    Google Scholar 

  58. Ielmini D, Nardi F, Cagli C (2011) Physical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories. Nanotechnology 22:254022

    Google Scholar 

  59. Russo U, Ielmini D, Cagli C et al (2009) Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices. IEEE Trans Electron Devices 56:186–192

    Google Scholar 

  60. Russo U, Ielmini D, Cagli C et al (2009) Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices. IEEE Trans Electron Devices 56:193–200

    Google Scholar 

  61. Luo WC, Lin KL, Hou TH et al (2012) Rapid prediction of RRAM RESET-state disturb by ramped voltage stress. IEEE Electron Device Lett 33:597–599

    Google Scholar 

  62. Luo WC, Liu JC, Hou TH et al (2013) Statistical model and rapid prediction of RRAM SET speed-disturb dilemma. IEEE Trans Electron Devices 60:3760–3766

    Google Scholar 

  63. Luo WC, Liu JC, Hou TH et al (2011) RRAM SET speed-disturb dilemma and rapid statistical prediction methodology. IEEE Int Electron Devices Meet Tech Dig 9.5.1–9.5.4

  64. Zhang HW, Liu LF, Gao B et al (2011) Gd-doping effect on performance of HfO2 based resistive switching memory devices using implantation approach. Appl Phys Lett 98:042105

    Google Scholar 

  65. Liu LF, Chen B, Gao B et al (2011) Engineering oxide resistive switching materials for memristive device application. Appl Phys A 102:991–996

    Google Scholar 

  66. Liu LF, Kang JF, Xu N et al (2008) Gd doping improved resistive switching characteristics of TiO2-based resistive memory devices. Jpn J Appl Phys 47:2701–2703

    Google Scholar 

  67. Chen L, Gou HY, Sun QQ et al (2011) Enhancement of resistive switching characteristics in Al2O3 based RRAM with embedded ruthenium nanocrystals. IEEE Electron Device Lett 32:794–796

    Google Scholar 

  68. Xie HW, Liu Q, Li YT et al (2012) Nitrogen-induced improvement of resistive switching uniformity in a HfO2-based RRAM device. Semicond Sci Technol 27:125008

    Google Scholar 

  69. Liu Q, Long SB, Wang W et al (2009) Improvement of resistive switching properties in ZrO2-based ReRAM with implanted Ti ions. IEEE Electron Device Lett 30:1335–1337

    Google Scholar 

  70. Guan WH, Long SB, Jia R et al (2007) Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide. Appl Phys Lett 91:062111

    Google Scholar 

  71. Panda D, Tseng TY (2013) Growth, dielectric properties, and memory device applications of ZrO2 thin films. Thin Solid Films 531:1–20

    Google Scholar 

  72. Guan WH, Long SB, Liu Q et al (2008) Nonpolar nonvolatile resistive switching in Cu doped ZrO2. IEEE Electron Device Lett 29:434–437

    Google Scholar 

  73. Wang Y, Liu Q, Long S et al (2010) Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications. Nanotechnology 21:045202

    Google Scholar 

  74. Lee D, Seong DJ, Choi HJ et al (2006) Excellent uniformity and reproducible resistance switching characteristics of doped binary metal oxides for non-volatile resistance memory applications. IEEE Int Electron Devices Meet Tech Dig 1–4

  75. Yoon J, Choi H, Lee D et al (2009) Excellent switching uniformity of Cu-doped MoO x /GdO x bilayer for nonvolatile memory applications. IEEE Electron Device Lett 30:457–459

    Google Scholar 

  76. Lee W, Park J, Kim S et al (2012) Improved switching uniformity in resistive random access memory containing metal-doped electrolyte due to thermally agglomerated metallic filaments. Appl Phys Lett 100:142106

    Google Scholar 

  77. Tsai YT, Chang TC, Lin CC et al (2011) Influence of nanocrystals on resistive switching characteristic in binary metal oxides memory devices. Electrochem Solid-State Lett 14:H135–H138

    Google Scholar 

  78. Gao B, Zhang HW, Kang JF et al (2009) Oxide-based RRAM: uniformity improvement using a new material-oriented methodology. Symp VLSI Technol 30–31

  79. Chen YS, Chen B, Gao B et al (2013) Well controlled multiple resistive switching states in the Al local doped HfO2 resistive random access memory device. J Appl Phys 113:64507

    Google Scholar 

  80. Chen YT, Chang TC, Huang JJ et al (2013) Influence of molybdenum doping on the switching characteristic in silicon oxide-based resistive switching memory. Appl Phys Lett 102:043508

    Google Scholar 

  81. Li M, Zhuge F, Zhu X et al (2010) Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches. Nanotechnology 21:425202

    Google Scholar 

  82. Shi L, Shang DS, Sun JR et al (2010) Flexible resistance memory devices based on Cu/ZnO:Mg/ITO structure. Phys Status Solidi RRL 4:344–346

    Google Scholar 

  83. Chen G, Song C, Chen C et al (2012) Resistive switching and magnetic modulation in cobalt-doped ZnO. Adv Mater 24:3515–3520

    Google Scholar 

  84. Lin CY, Lin MH, Wu MC et al (2008) Improvement of resistive switching characteristics in SrZrO3 thin films with embedded Cr layer. IEEE Electron Device Lett 29:1108–1111

    Google Scholar 

  85. Zheng ZW, Cheng CH, Chou KI et al (2012) Improved current distribution in resistive memory on flexible substrate using nitrogen-rich TaN electrode. Appl Phys Lett 101:243507

    Google Scholar 

  86. Lin CY, Wu CY, Wu CY et al (2007) Effect of top electrode material on resistive switching properties of ZrO2 film memory devices. IEEE Electron Device Lett 28:366–368

    Google Scholar 

  87. Ryu SW, Ahn YB, Kim HJ et al (2012) Ti-electrode effects of NiO based resistive switching memory with Ni insertion layer. Appl Phys Lett 100:133502

    Google Scholar 

  88. Yu WD, Li XM, Rui Y et al (2008) Improvement of resistive switching property in a noncrystalline and low-resistance La0.7Ca0.3MnO3 thin film by using an Ag–Al alloy electrode. J Phys D Appl Phys 41:215409

    Google Scholar 

  89. Sun B, Liu YX, Liu LF et al (2009) Highly uniform resistive switching characteristics of TiN/ ZrO2/Pt memory devices. J Appl Phys 105:061630

    Google Scholar 

  90. Zhou P, Yin M, Wan HJ et al (2009) Role of TaON interface for Cu x O resistive switching memory based on a combined model. Appl Phys Lett 94:053510

    Google Scholar 

  91. Chen HY, Tian H, Gao B et al (2012) Electrode/oxide interface engineering by inserting single-layer graphene: application for HfO x -based resistive random access memory. IEEE Int Electron Devices Meet Tech Dig 20.5.1–20.5.4

  92. Lee DY, Tseng TY (2012) Unipolar resistive switching characteristics of a ZrO2 memory device with oxygen ion conductor buffer layer. IEEE Electron Device Lett 33:803–805

    Google Scholar 

  93. Lv HB, Wan HJ, Tang TG (2010) Improvement of resistive switching uniformity by introducing a thin GST interface layer. IEEE Electron Device Lett 31:978–980

    Google Scholar 

  94. Rahaman SZ, Maikap S, Chen WS et al (2012) Impact of TaO x nanolayer at the GeSe x /W interface on resistive switching memory performance and investigation of Cu nanofilament. J Appl Phys 111:063710

    Google Scholar 

  95. Chen L, Xu Y, Sun QQ et al (2010) Highly uniform bipolar resistive switching with Al2O3 buffer layer in robust NbAlO-based RRAM. IEEE Electron Device Lett 31:356–358

    Google Scholar 

  96. Tsai TM, Chang KC, Zhang R et al (2013) Performance and characteristics of double layer porous silicon oxide resistance random access memory. Appl Phys Lett 102:253509

    Google Scholar 

  97. Lee J, Shi J, Lee D et al (2010) Diode-less nano-scale ZrO x /HfO x RRAM device with excellent switching uniformity and reliability for high-density cross-point memory applications. IEEE Int Electron Devices Meet Tech Dig 19.5.1–19.5.4

  98. Lee J, Bourim EM, Lee W et al (2010) Effect of ZrO x /HfO x bilayer structure on switching uniformity and reliability in nonvolatile memory applications. Appl Phys Lett 97:172105

    Google Scholar 

  99. Liu Q, Long SB, Lv HB et al (2010) Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. ACS Nano 4:6162–6168

    Google Scholar 

  100. Liu Q, Long SB, Wang W et al (2010) Low-power and highly uniform switching in ZrO2-based ReRAM with a Cu nanocrystal insertion layer. IEEE Electron Device Lett 31:1299–1301

    Google Scholar 

  101. Yoon JH, Han JH, Jung JS et al (2013) Highly improved uniformity in the resistive switching parameters of TiO2 thin films by inserting Ru nanodots. Adv Mater 25:1987–1992

    Google Scholar 

  102. Chen D, Zhang YZ (2012) Synthesis of NiFe2O4 nanoparticles by a low temperature microwave-assisted ball milling technique. Sci China Technol Sci 55:1535–1538

    Google Scholar 

  103. Hu L, Wang HP, Li LH et al (2013) Geometric optimization of electrostatic fields for stable levitation of metallic materials. Sci China Technol Sci 56:53–59

    Google Scholar 

  104. Yin M, Zhou P, Lv HB et al (2008) Improvement of resistive switching in Cu x O using new RESET mode. IEEE Electron Device Lett 29:681–683

    Google Scholar 

  105. Park J, Jo M, Jung S et al (2011) New set/reset scheme for excellent uniformity in bipolar resistive memory. IEEE Electron Device Lett 32:228–230

    Google Scholar 

  106. Lian WT, Lv HB, Liu Q et al (2011) Improved resistive switching uniformity in Cu/HfO2/Pt devices by using current sweeping mode. IEEE Electron Device Lett 32:1053–1055

    Google Scholar 

  107. Yoon DH, Kim SJ, Jung J et al (2012) Low-voltage driving solution-processed nickel oxide based unipolar resistive switching memory with Ni nanoparticles. J Mater Chem 22:17568–17572

    Google Scholar 

  108. Nauenheim C, Kuegeler C, Ruediger A et al (2010) Investigation of the electroforming process in resistively switching TiO2 nanocrosspoint junctions. Appl Phys Lett 96:122902

    Google Scholar 

  109. Paskaleva A, Atanassova E, Novkovski N (2009) Constant current stress of Ti-doped Ta2O5 on nitrided Si. J Phys D Appl Phys 42:025105

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61322408, 61221004, 61334007, 61274091, 61106119 and 61106082), National Basic Research Program of China (2010CB934200 and 2011CBA00602) and National High Technology Research and Development Program of China (2011AA010401 and 2011AA010402).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shibing Long or Ming Liu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Long, S., Wang, G. et al. An overview of the switching parameter variation of RRAM. Chin. Sci. Bull. 59, 5324–5337 (2014). https://doi.org/10.1007/s11434-014-0673-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0673-z

Keywords

Navigation