Skip to main content
Log in

Investigation of self-assembled protein dimers through an artificial ion channel for DNA sensing

  • Article
  • Analytical Chemistry
  • Published:
Chinese Science Bulletin

Abstract

Artificial nanopores have become promising tools for sensing DNA. Here, we report a new technique for sensing DNA through a conical-shaped nanopore embedded in track-etched polyethylene terephthalate (PET) membrane. Two different streptavidin-conjugated monovalent DNA probes were prepared that can bind to two distinct segments (at either end) of the target DNA. The size of target DNA-linked to the two streptavidin-conjugated monovalent DNA probes is double that of the individual probes. By precisely controlling the tip diameter of the conical nanopore embedded in the PET polymer, events due to the translocation of the streptavidin-conjugated monovalent DNA probes through the nanopore can be filtered and purposely undetected, whereas the current pulses due to the translocation of the target DNA-induced self-assembled complexes can be detected. The two streptavidin-conjugated DNA probes cannot be linked by multi-mismatched DNA. Therefore, multi-mismatched (non-specific) DNA will not induce any current pulse signatures. The current pulse signatures for the self-assembled complex can be used to confirm the presence of the target DNA. The size-dependent detection of self-assembled complexes on the molecular level shows strong promise for the detection of biomolecules without interference from the probes.

摘要

近些年来人工纳米孔材料的设计和开发越来越受到人们的广泛关注,并且有希望应用到DNA的检测中。本文报道了了一个新技术利用锥形纳米孔来测定小片段的DNA。本方法利用目标DNA和与链霉亲和素结合的DNA探针自组装形成蛋白质二聚体,通过电阻脉冲法实现对二聚体的特异性检测。本方法还可以通过改变自组装的对象实现对其他小分子的测定。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bayley H, Martin CR (2000) Resistive-pulse sensing—from microbes to molecules. Chem Rev 100:2575–2594

    Article  Google Scholar 

  2. Mara A, Siwy Z, Trautmann C et al (2004) An asymmetric polymer nanopore for single molecule detection. Nano Lett 4:497–501

    Article  Google Scholar 

  3. Heins EA, Siwy ZS, Baker LA et al (2005) Detecting single porphyrin molecules in a conically shaped synthetic nanopore. Nano Lett 5:1824–1829

    Article  Google Scholar 

  4. Bayley H, Jayasinghe L (2004) Functional engineered channels and pores—(review). Mol Membr Biol 21:209–220

    Article  Google Scholar 

  5. Bean CP, Doyle MV, Entine G (1970) Etching of submicron pores in irradiated mica. J Appl Phys 41:1454–1459

    Article  Google Scholar 

  6. Gu LQ, Cheley S, Bayley H (2001) Capture of a single molecule in a nanocavity. Science 291:636–640

  7. Kasianowicz JJ, Burden DL, Han LC et al (1999) Genetically engineered metal ion binding sites on the outside of a channel’s transmembrane beta-barrel. Biophys J 76:837–845

    Article  Google Scholar 

  8. Mathe J, Aksimentiev A, Nelson DR et al (2005) Orientation discrimination of single-stranded DNA inside the alpha-hemolysin membrane channel. Proc Natl Acad Sci USA 102:12377–12382

    Article  Google Scholar 

  9. Braha O, Walker B, Cheley S et al (1997) Designed protein pores as components for biosensors. Chem Biol 4:497–505

    Article  Google Scholar 

  10. Gu LQ, Braha O, Conlan S et al (1999) Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398:686–690

    Article  Google Scholar 

  11. Han AP, Schurmann G, Mondin G et al (2006) Sensing protein molecules using nanofabricated pores. Appl Phys Lett 88:093901

    Article  Google Scholar 

  12. Gu LQ, Bayley H (2000) Interaction of the noncovalent molecular adapter, beta-cyclodextrin, with the staphylococcal alpha-hemolysin pore. Biophys J 79:1967–1975

    Article  Google Scholar 

  13. Lee S, Zhang YH, White HS et al (2004) Electrophoretic capture and detection of nanoparticles at the opening of a membrane pore using scanning electrochemical microscopy. Anal Chem 76:6108–6115

    Article  Google Scholar 

  14. Kasianowicz JJ, Brandin E, Branton D et al (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 93:13770–13773

    Article  Google Scholar 

  15. Li J, Stein D, McMullan C et al (2001) Ion-beam sculpting at nanometre length scales. Nature 412:166–169

    Article  Google Scholar 

  16. Storm AJ, Chen JH, Ling XS et al (2003) Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater 2:537–540

    Article  Google Scholar 

  17. Iqbal SM, Akin D, Bashir R (2007) Solid-state nanopore channels with DNA selectivity. Nat Nanotechnol 2:243–248

    Article  Google Scholar 

  18. Apel PY, Korchev YE, Siwy Z et al (2001) Diode-like single-ion track membrane prepared by electro-stopping. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 184:337–346

    Article  Google Scholar 

  19. Nilsson J, Lee JRI, Ratto TV et al (2006) Localized functionalization of single nanopores. Adv Mater 18:427–431

    Article  Google Scholar 

  20. Spohr R (2005) Status of ion track technology—prospects of single tracks. Radiat Meas 40:191–202

    Article  Google Scholar 

  21. Yang L, Zhai Q, Li G et al (2013) A light transmission technique for pore size measurement in track-etched membranes. Chem Commun 49:11415–11417

    Article  Google Scholar 

  22. Sexton LT, Horne LP, Sherrill SA et al (2007) Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor. J Am Chem Soc 129:13144–13152

    Article  Google Scholar 

  23. Menestrina J, Yang C, Schiel M et al (2014) Charged particles modulate local ionic concentrations and cause formation of positive peaks in resistive-pulse-based detection. J Phys Chem C 118:2391–2398

    Article  Google Scholar 

  24. Liu N, Jiang Y, Zhou Y et al (2013) Two-way nanopore sensing of sequence-specific oligonucleotides and small-molecule targets in complex matrices using integrated DNA supersandwich structures. Angew Chem Int Ed 52:2007–2011

    Article  Google Scholar 

  25. Chang H, Kosari F, Andreadakis G et al (2004) DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels. Nano Lett 4:1551–1556

    Article  Google Scholar 

  26. Smeets RMM, Keyser UF, Krapf D et al (2006) Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett 6:89–95

    Article  Google Scholar 

  27. Weber PC, Ohlendorf DH, Wendoloski JJ et al (1989) Structural origins of high-affinity biotin binding to streptavidin. Science 243:85–88

    Article  Google Scholar 

  28. Thomas NE, Coakley WT, Winters C (1996) Contact formation in polylysine-mediated membrane-glass interaction. Colloid Surf B Biointerfaces 6:139–147

    Article  Google Scholar 

  29. Wharton JE, Jin P, Sexton LT et al (2007) A method for reproducibly preparing synthetic nanopores for resistive-pulse biosensors. Small 3:1424–1430

    Article  Google Scholar 

  30. Funabashi H, Ubukata M, Ebihara T et al (2007) Assessment of small ligand-protein interactions by electrophoretic mobility shift assay using DNA-modified ligand as a sensing probe. Biotechnol Lett 29:785–789

    Article  Google Scholar 

  31. Haeuptle MT, Aubert ML, Djiane J et al (1983) Binding-sites for lactogenic and somatogenic hormones from rabbit mammary-gland and liver—their purification by affinity-chromatography and their identification by immunoprecipitation and photoaffinity-labeling. J Biol Chem 258:305–314

    Google Scholar 

  32. Siwy Z, Trofin L, Kohli P et al (2005) Protein biosensors based on biofunctionalized conical gold nanotubes. J Am Chem Soc 127:5000–5001

    Article  Google Scholar 

  33. Hou SF, Wang JH, Martin CR (2005) Template-synthesized protein nanotubes. Nano Lett 5:231–234

    Article  Google Scholar 

  34. Harrell CC, Choi Y, Horne LP et al (2006) Resistive-pulse DNA detection with a conical nanopore sensor. Langmuir 22:10837–10843

    Article  Google Scholar 

  35. Movileanu L, Howorka S, Braha O et al (2000) Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat Biotechnol 18:1091–1095

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21190040 and 21275137). The authors would like to thank their supervisor, Charles R. Martin, at the University of Florida. The authors also thank Helmholtzzentrum für Schwerionenforschung GmbH (GSI) for providing track-etched membranes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahai Wang.

Additional information

SPECIAL TOPIC: Nanopore Analysis

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Sun, T., Wang, E. et al. Investigation of self-assembled protein dimers through an artificial ion channel for DNA sensing. Chin. Sci. Bull. 59, 4946–4952 (2014). https://doi.org/10.1007/s11434-014-0626-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0626-6

Keywords

关键词

Navigation