Skip to main content
Log in

Advances in the understanding of inter-subspecific hybrid sterility and wide-compatibility in rice

  • Special Topic/Review/Developmental Genetics
  • Published:
Chinese Science Bulletin

Abstract

Hybrid sterility is a major form of postzygotic reproductive isolation and frequently occurs in hybrids between divergent populations, such as the indica and japonica subspecies of Asian cultivated rice (Oryza sativa L.). It has been a major barrier for utilization of the strong heterosis expressed in hybrids between indica and japonica. A large number of loci for rice inter-subspecific hybrid sterility have been identified by genetic analysis. Cytological studies revealed that male and female gamete abortions and reduced affinity between the uniting gametes all occurred in indica-japonica hybrids, suggesting the complexity of the causes for inter-subspecific hybrid sterility. Two genes conditioning embryo-sac and pollen sterility respectively in indica-japonica hybrids have been cloned recently, providing opportunities for molecular characterization of the indica-japonica hybrid sterility and wide-compatibility. Future studies should aim at cloning more genes for indica-japonica hybrid sterility, characterizing the underlying molecular mechanism, and utilization of the findings for the development of inter-subspecific hybrids to increase rice productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oka H I. Origin of cultivated rice. Tokyo: Scientific Societies Press, 1988. 181–209

    Google Scholar 

  2. Sano Y. Sterility barriers between Oryza sativa and O. glaberrima. Rice Genetics In: IRRI, ed. Rice Genetics Proceedings of the First Rice Genetics Symposium. Manila: IRRI, 1986. 109–118

    Chapter  Google Scholar 

  3. Orr H A, Presgraves D C. Speciation by postzygotic isolation: Forces, genes and molecules. BioRssays, 2000, 22: 1085–1094

    Article  Google Scholar 

  4. Ting Y. The origin and evolution of cultivated rice in China. Acta Agron Sin, 1957, 8: 243–260

    Google Scholar 

  5. Chang T T. The origin, evolution, cultivation, dissemination, and diversification of Asian and African rice. Euphytica, 1976, 25: 435–441

    Article  Google Scholar 

  6. Second G. Origin of the genetic diversity of cultivated rice: study of the polymorphism scored at 40 isozyme loci. Jpn J Genet, 1982, 57: 25–57

    Article  Google Scholar 

  7. Glaszmann J C. Isozymes and classification of Asian rice varieties. Theor Appl Genet, 1987, 74: 21–30

    Article  Google Scholar 

  8. Zhang Q, Saghai Maroof M A, Lu T Y, et al. Genetic diversity and differentiation of indica and japonica rice detected by RFLP analysis. Theor Appl Genet, 1992, 83: 495–499

    Google Scholar 

  9. Zhang Q, Liu K D, Yang G P, et al. Molecular marker diversity and hybrid sterility in indica-japonica rice crosses. Theor Appl Genet, 1997, 95: 112–118

    Article  Google Scholar 

  10. Yang G P, Saghai Maroof M A, Xu C G, et al. Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice. Mol Gen Genet, 1994, 245: 187–194

    Article  Google Scholar 

  11. Garris A J, Tai T H, Coburn J, et al. Genetic structure and diversity in Oryza sativa L. Genetics, 2005, 169: 1631–1638

    Article  Google Scholar 

  12. Mackill D J. Classifying japonica cultivars with RAPD markers. Crop Sci, 1995, 35: 889–894

    Article  Google Scholar 

  13. Liu K D, Yang G P, Zhu S H, et al. Extraordinary polymorphic ribosomal DNA in wild and cultivated rice. Genome, 1996, 39: 1109–1116

    Article  Google Scholar 

  14. Nakano M, Yoshimura A, Iwata N. Phylogenetic study of cultivated rice and its wild relatives by RFLP. Rice Genet Newslett, 1992, 9: 132–134

    Google Scholar 

  15. Morishima H, Oka H I. Phylogenetic differentiation of cultivated rice, 22. Numerical evaluation of the Indica-Japonica differentiation. Jpn J Breed, 1981, 31: 402–413

    Google Scholar 

  16. Han B, Xue Y B. Genome-wide intraspecific DNA-sequence variations in rice. Curr Opin Plant Biol, 2003, 6: l34–l38

    Article  Google Scholar 

  17. Feng Q, Zhang Y, Hao P, et al. Sequence and analysis of rice chromosome 4. Nature, 2002, 420: 316–320

    Article  Google Scholar 

  18. Ikehashi H, Araki H. Varietal screening for compatibility types revealed in F1 fertility of distant crosses in rice. Jpn J Breed, 1984, 34: 304–312

    Google Scholar 

  19. Kato S, Kosaka H, Hara S. On the affinity of rice varieties as shown by fertility of hybrid plants. Bull Sci Fac Agric Kyushu Univ, 1928, 3: 132–147

    Google Scholar 

  20. Liu K D, Zhou Z Q, Xu C G, et al. An analysis of hybrid sterility in rice using a diallel cross of 21 parents involving indica, japonica and wide compatibility varieties. Euphytica, 1996, 90: 275–280

    Article  Google Scholar 

  21. Morinaga T, Kuriyama H. Intermediate type of rice in the subcontinent of India and Java. Jpn J Breed, 1958, 7: 253–269

    Google Scholar 

  22. Liu H Y, Xu C G, Zhang Q. Male and female gamete abortions, and reduced affinity between the uniting gametes as the causes for sterility in an indica/japonica hybrid in rice. Sex Plant Reprod, 2004, 17: 55–62

    Article  Google Scholar 

  23. Teng J L, Xue Q Z, Wang Y X. Ultrastructural observations of pollen and anther wall developments between subspecies in rice (Oryza sativa L.) (in Chinese). J Zhejiang Agric Univ, 1996, 22: 467–473

    Google Scholar 

  24. Zhu X H, Cao X Z, Zhu Q S. Cytological studies on spikelet sterility of indica-japonica hybrids in rice (in Chinese). Chin J Rice Sci, 1996, 10: 71–78

    Google Scholar 

  25. Song X, Qiu S Q, Xu C G, et al. Genetic dissection of embryo sac fertility, pollen fertility, and their contributions to spikelet fertility of intersubspecific hybrids in rice. Theor Appl Genet, 2005, 110: 205–211

    Article  Google Scholar 

  26. Zhang G Q, Lu Y G. Genetic studies on the hybrid sterility in cultivated rice (Oryza sativa). II. Genic mode for F1 pollen sterility (in Chinese). Acta Genet Sin, 1993, 20: 249–255

    Google Scholar 

  27. Zhang G Q, Lu Y G. Genetics of F1 pollen sterility in Oryza sativa. In: IRRI, ed. Rice Genetics III. Manila: IRRI, 1996. 418–422

    Google Scholar 

  28. He G H, Zheng J K, Yin G D, et al. Gamete fertility of the between indica and japonica. Chin J Rice Sci, 1994, 8: 177–180

    Google Scholar 

  29. Yan C J, Liang G H, Gu S L, et al. Molecular marker analysis and genetic basis for sterility of typical indica/japonica hybrids (in Chinese). Acta Genet Sin, 2003, 30: 267–276

    Google Scholar 

  30. Jing W, Zhang W, Jiang L, et al. Two novel loci for pollen sterility in hybrids between the weedy strain Ludao and the Japonica variety Akihikari of rice (Oryza sativa L.). Theor Appl Genet, 2007, 114: 915–925

    Article  Google Scholar 

  31. Long Y, Zhao L, Niu B, et al. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proc Natl Acad Sci USA, 2008, 105: 18871–18876

    Article  Google Scholar 

  32. Zhang Z S, Lu Y G, Liu X D, et al. Cytological mechanism of pollen abortion resulting from allelic interaction of F1 pollen sterility locus in rice (Oryza sativa L.). Genetica, 2006, 127: 295–302

    Article  Google Scholar 

  33. Yokoo M. Female sterility in an indica-japonica cross of rice. Jpn J Breed, 1984, 34: 219–227

    Google Scholar 

  34. Liu Y S, Sun J S, Zhou K D. Cytological basis causing spikelet sterility of intersubspecific hybrid in Oryza sativa (in Chinese). Acta Biol Exp Sin, 1997, 30: 335–341

    Google Scholar 

  35. Chen J J, Ding J H, Ouyang Y D, et al. A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice. Proc Natl Acad Sci USA, 2008, 105: 11436–11441

    Article  Google Scholar 

  36. Zhao Z G, Jiang L, Zhang W W, et al. Fine mapping of S31, a gene responsible for hybrid embryo-sac abortion in rice (Oryza sativa L.). Planta, 2007, 226: 1087–1096

    Article  Google Scholar 

  37. Oka H I. Genetic analysis for the sterility of hybrids between distantly related varieties of cultivated rice. J Genet, 1957, 55: 397–409

    Article  Google Scholar 

  38. Oka H I. Analysis of genes controlling F1 sterility in rice by the use of isogenic lines. Jpn J Genet, 1974, 77: 521–534

    Google Scholar 

  39. Kitamura E. Genetics studies on sterility observed in hybrids between distantly related varieties of rice (Oryza sativa L.). Bull Chgoku Agri Exp Sta Ser A, 1962, 8: 141–205

    Google Scholar 

  40. Ikehashi H, Araki H. Genetics of F1 sterility in remote crosses in rice. Rice Genetics In: IRRI, ed. Rice Genetics Proceedings of the First Rice Genetics Symposium. Manila: IRRI, 1986, 119–130

    Chapter  Google Scholar 

  41. Sano Y, Chu Y E, Oka H I. Genetic studies of speciation in cultivated rice, I. Genic analysis for the F1 sterility between O. sativa L. and O. glaberrima steud. Jpn J Genet, 1979, 54: 121–132

    Article  Google Scholar 

  42. Sano Y. The genic nature of gamete eliminator in rice. Genetics, 1990, 125: 183–191

    Google Scholar 

  43. Yanagihara S, Kato H, Ikehashi H. A new locus for multiple alleles causing hybrid sterility between an Aus variety and javanica varieties in rice (Oryza sativa L.). Theor Appl Genet, 1992, 90: 182–188

    Google Scholar 

  44. Wan J, Yanagihara S, Kato H, et al. Multiple alleles at a new locus causing hybrid sterility between a Korean indica variety and a javanica variety in rice (Oryza sativa L.). Jpn J Breed, 1993, 43: 507–516

    Google Scholar 

  45. Zhao Z G, Wang C M, Jiang L, et al. Identification of a new hybrid sterility gene in rice (Oryza sativa L.). Euphytica, 2006, 151: 331–337

    Article  Google Scholar 

  46. Zhu S S, Jiang L, Wang C M, et al. The origin of weedy rice Ludao in China deduced by a genome wide analysis of its hybrid sterility genes. Breed Sci, 2005, 55: 409–414

    Article  Google Scholar 

  47. Sawamura N, Sano Y. Chromosomal location of gamete eliminator, S11(t), found in an Indica-Japonica hybrid. Rice Genet Newslett, 1996, 13: 70–71

    Google Scholar 

  48. Taneichi T, Koide Y, Nishimoto D, et al. Hybrid sterility gene S13 found in a distantly related rice species, O. longistaminata. Genes Genet Syst, 2005, 80: 477

    Google Scholar 

  49. Hirano H, Sano Y, Hirai A, et al. Genetics of Speciation in Rice. In: Hirano H Y, Hirai A, Sano Y, et al., eds. Rice Biology in the Genomics Era. Berlin Heidelberg: Springer, 2008. 247–259

    Chapter  Google Scholar 

  50. Wan J, Yamaguchi Y, Kato H, et al. Two new loci for hybrid sterility in cultivated rice (Oryza sativa L.). Theor Appl Genet, 1996, 92: 183–190

    Article  Google Scholar 

  51. Wan J, Ikehashi H. Identification of a new locus S-16 causing hybrid sterility in native rice varieties (Oryza sativa L.) from Tai-hu lake region and Yunnan Province, China. Breed Sci, 1995, 45: 461–470

    Google Scholar 

  52. Wan J, Ikehashi H, Sakai M, et al. Mapping of hybrid sterility gene S17 of rice (Oryza sativa L.) by isozyme and RFLP markers. Rice Genet Newslett, 1998, 15: 151–154

    Google Scholar 

  53. Singh S P, Sundaram R M, Biradar S K, et al. Identification of simple sequence repeat markers for utilizing wide-compatibility genes in inter-subspecific hybrids in rice (Oryza sativa L.). Theor Appl Genet, 2006, 113: 509–517

    Article  Google Scholar 

  54. Zhu S S, Wang C M, Zheng T Q, et al. A new gene located on chromosome 2 causing hybrid sterility in a remote cross of rice. Plant Breed, 2005, 124: 440–445

    Article  Google Scholar 

  55. Li D, Chen L, Jiang L, et al. Fine mapping of S32(t), a new gene causing hybrid embryo sac sterility in a Chinese landrace rice (Oryza sativa L.). Theor Appl Genet, 2007, 114: 515–524

    Article  Google Scholar 

  56. Sano Y. A new gene controlling sterility in F1 hybrids of two cultivated rice species. J Hered, 1983, 74: 435–439

    Google Scholar 

  57. Sano Y. Identification of sterility genes introduced from Oryza glaberrima into O. sativa. Jpn J Breed, 1985, 35: 202–203

    Google Scholar 

  58. Koide Y, Ikenaga M, Sawamura N, et al. The evolution of sex-independent transmission ratio distortion involving multiple allelic interactions at a single locus in rice. Genetics, 2008, 180: 409–420

    Article  Google Scholar 

  59. Sano Y. Pollen-killer in rice. Jpn J Breed, 1994, 44 (suppl 1): 298

    Google Scholar 

  60. Taguchi K, Doi K, Yoshimura A. RFLP mapping of S19, a gene for F1 pollen semi-sterility found in backcross progeny of Oryza saliva and O. glaberrisna. Rice Genet Newslett, 1999, 16: 70–71

    Google Scholar 

  61. Doi K, Taguchi K, Yoshimura A. RFLP mapping of S20 and S21 for F1 pollen semi-sterility found in backcross progeny of Oryza sativa and O. glaberrima. Rice Genet Newslett, 1999, 16: 65–68

    Google Scholar 

  62. Sobrizal, Matsuzaki Y, Sanchez P L, et al. Identification of a gene for male gamete abortion in backcross progeny of Oryza sativa and Oryza glumaepatula. Rice Genet Newslett, 2000, 17: 59–61

    Google Scholar 

  63. Kubo T, Eguchi M, Yoshimura A. A new gene for F1 pollen sterility in Japonica/Indica cross of rice. Rice Genet Newslett, 2000, 17: 63–69

    Google Scholar 

  64. Kubo T, Yoshimura A. Linkage analysis of an F1 sterility gene in Japonica/Indica cross of rice. Rice Genet Newslett, 2001, 18: 52–53

    Google Scholar 

  65. Sobrizal Y, Matsuzaki Y, Yoshimura A. Mapping of a gene for pollen semi-sterility on rice chromosome 8 of rice. Rice Genet Newslett, 2001, 18: 59–61

    Google Scholar 

  66. Sobrizal, Matsuzaki Y. Yoshimura A. Mapping of pollen semi-sterility gene, S28(t), on rice chromosome 4. Rice Genet Newslett, 2002, 19: 80–82

    Google Scholar 

  67. Li W T, Zeng R Z, Zhang Z M, et al. Fine mapping of locus S-b for F1 pollen sterility in rice (Oryza sativa L.). Chinese Sci Bull, 2006, 51: 675–680

    Article  Google Scholar 

  68. Yang C Y, Chen Z Z, Zhuang C X, et al. Genetic and physical fine-mapping of the Sc locus conferring indica-japonica hybrid sterility in rice (Oryza sativa L.). Chinese Sci Bull, 2004, 49: 1718–1721

    Article  Google Scholar 

  69. Li W T, Zeng R Z, Zhang Z M, et al. Identification and fine mapping of S-d, a new locus conferring the partial pollen sterility of intersubspecific F1 hybrids in rice (Oryza sativa L.). Theor Appl Genet, 2008, 116: 915–922

    Article  Google Scholar 

  70. Zhu W Y, Li W T, Ding X H, et al. Preliminary identification of F1 pollen sterility gene S-e in Oryza sativa (in Chinese with English abstract). J South China Agricul Univ, 2008, 29: 1–5

    Google Scholar 

  71. Zhang G Q, Lu Y G, Zhang H, et al. Genetic studies of the hybrid sterility in cultivated rice (Oryza sativa). IV. Genotypes for F1 pollen sterility (in Chinese). Acta Genet Sin, 1994, 21: 34–41

    Google Scholar 

  72. Wang G W, He Y Q, XU C G, et al. Fine mapping of f5-Du, a gene conferring wide-compatibility for pollen fertility in inter-subspecific hybrids of rice (Oryza sativa L.). Theor Appl Genet, 2006, 112: 382–387

    Article  Google Scholar 

  73. Chen J, Jiang L, Wang C, et al. Mapping of loci for pollen sterility of indica-japonica hybrids in rice (Oryza sativa L.). Acta Agron Sin, 2006, 32: 515–521

    Google Scholar 

  74. Wang J, Liu K D, Xu C G, et al. The high level of wide-compatibility of variety Dular has a complex genetic basis. Theor Appl Genet, 1998, 97: 407–412

    Article  Google Scholar 

  75. Wang C, Zhu C, Zhai H, et al. Mapping segregation distortion loci and quantitative trait loci for spikelet sterility in rice (Oryza sativa L.). Genet Res, 2005, 86: 97–106

    Article  Google Scholar 

  76. Zhang G Q, Lu Y G. Genetic studies of the hybrid sterility in cultivated rice (Oryza sativa). I. Diallel analysis of the hybrid sterility among isogenic F1 sterile lines (in Chinese). Chinese J Rice Sci, 1989, 3: 97–101

    Google Scholar 

  77. Sano Y. Genetic comparisons of chromosome 6 between wild and cultivated rice. Jpn J Breed, 1992, 42: 561–572

    Google Scholar 

  78. Lu C G, Zou J S, Ikehashi H. Developing rice lines possessing neutral alleles at sterility loci to improve the width of compatibility. Plant Breed, 2004, 123: 98–100

    Article  Google Scholar 

  79. Liu A, Zhang Q, Li H. Location of a gene for wide-compatibility in the RFLP linkage map. Rice Genet Newslett, 1992, 9: 134–136

    Google Scholar 

  80. Yanagihara S, Mccouch S R, Ishikawa K, et al. Molecular analysis of the inheritance of the S-5 locus, conferring wide compatibility in Indica/Japonica hybrids of rice (Oryza sativa L.). Theor Appl Genet, 1995, 90: 182–188

    Article  Google Scholar 

  81. Liu K D, Wang J, Li H B, et al. A genome-wide analysis of wide compatibility in rice and the precise location of the S5 locus in the molecular map. Theor Appl Genet, 1997, 95: 809–814

    Article  Google Scholar 

  82. Qiu S Q, Liu K D, Jiang J X, et al. Delimitation of the rice wide compatibility gene S n5 n to a 40-kb DNA fragment. Theor Appl Genet, 2005, 111: 1080–1086

    Article  Google Scholar 

  83. Ji Q, Lu J, Chao Q, et al. Delimiting a rice wide-compatibility gene S n5 to a 50 kb region. Theor Appl Genet, 2005, 111: 1495–1503

    Article  Google Scholar 

  84. Zhuang C, Zhang G, Mei M, et al. Molecular mapping of the Sa locus for F1 pollen sterility in cultivated rice (Oryza sativa L.). Acta Genet Sin, 1999, 26: 213–218

    Google Scholar 

  85. Su J, Liu Y G. Fine mapping and cloning of the gene S-a for F1 pollen sterility in cultivated rice (Oryza sativa L.). Mol Plant Breed, 2003, 1: 757–758

    Google Scholar 

  86. Nonomura K I, Miyoshi K, Eiguchi M, et al. The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell, 2003, 15: 1728–1739

    Article  Google Scholar 

  87. Nonomura K I, Nakano M, Fukuda T, et al. The novel gene HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis. Plant Cell, 2004, 16: 1008–1020

    Article  Google Scholar 

  88. Zhu Q H, Ramm K, Shivakkumar R, et al. The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiol, 2004, 135: 1514–1525

    Article  Google Scholar 

  89. Jung K H, Han M J, Lee Y S, et al. Rice Undeveloped Tapetum1 is a major regulator of early tapetum development. Plant Cell, 2005, 17: 2705–2722

    Article  Google Scholar 

  90. Jiang S Y, Cai M, Ramachandran S. The Oryza sativa no pollen (Osnop) gene plays a role in male gametophyte development and most likely encodes a C2-GRAM domain-containing protein. Plant Mol Biol, 2005, 57: 835–853

    Article  Google Scholar 

  91. Nonomura K, Nakano M, Eiguchi M, et al. PAIR2 is essential for homologous chromosome synapsis in rice meiosis I. J Cell Sci, 2006, 119: 217–225

    Article  Google Scholar 

  92. Li N, Zhang D S, Liu H S, et al. The rice Tapetum Degeneration Retardation gene is required for tapetum degradation and anther development. Plant Cell, 2006, 18: 2999–3014

    Article  Google Scholar 

  93. Han M J, Jung K H, Yi G, et al. Rice Immature Pollen 1 (RIP1) is a regulator of late pollen development. Plant Cell Physiol, 2006, 47: 1457–1472

    Article  Google Scholar 

  94. Ludovico D, Sara J, Fabio F, et al. The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice. Plant J, 2007, 52: 690–699

    Article  Google Scholar 

  95. Imamura T, Kusano H, Kajigaya Y, et al. A rice dihydrosphingosine C4 hydroxylase (DSH1) gene, which is abundantly expressed in the stigmas, vascular cells and apical meristem, may be involved in fertility. Plant Cell Physiol, 2007, 48: 1108–1120

    Article  Google Scholar 

  96. Chen R, Zhao X, Shao Z, et al. Rice UDP-glucose pyrophosphorylase1 is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility. Plant Cell, 2007, 19: 847–861

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QiFa Zhang.

Additional information

Supported by grants partially from the National Special Key Project of China on Functional Genomics of Major Plants and Animals (Grant No. 2006AA10A103) and National Natural Science Foundation of China (Grant No. 30621065)

About this article

Cite this article

Ouyang, Y., Chen, J., Ding, J. et al. Advances in the understanding of inter-subspecific hybrid sterility and wide-compatibility in rice. Chin. Sci. Bull. 54, 2332–2341 (2009). https://doi.org/10.1007/s11434-009-0371-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0371-4

Keywords

Navigation