Skip to main content
Log in

Low-field positive and high-field negative magneto-resistances in multiphase Fe-oxide thin films at room temperature

  • Articles
  • Condesed Matter Physics
  • Published:
Chinese Science Bulletin

Abstract

Multiphase Fe-oxide thin films are fabricated on glass substrates by a facing-target sputtering technique. X-ray diffraction and X-ray photoelectron spectroscopy reveal that Fe, Fe3O4, γ-Fe2O3 and FeO coexist in the films. High resolution transmission electron microscopy shows the well-defined columnar grain structure with the unoxidized Fe as the core and iron-oxide as the shell. The low-field positive and high-field negative magnetoresistances coexist in such a system at room temperature, which can be explained by considering a shell/core model. Nonlinear current-voltage curve and photovoltaic effect further confirm the tunneling-type conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Velikov K P, Moroz A, van Blaaderen A. Photonic crystals of core-shell colloidal particles. Appl Phys Lett, 2002, 80: 49–51

    Article  Google Scholar 

  2. Zhou H, Alves H, Hofmann D M, et al. Behind the weak excitonic emission of ZnO quantum dots: ZnO/Zn(OH)2 core-shell structure. Appl Phys Lett, 2002, 80: 210–212

    Article  Google Scholar 

  3. Cao L X, Zhang J H, Ren S L, et al. Luminescence enhancement of core-shell ZnS:Mn/ZnS nanoparticles. Appl Phys Lett, 2002, 80: 4300–4302

    Article  Google Scholar 

  4. Ebenstein Y, Mokari T, Banin U. Fluorescence quantum yield of CdSe/ZnS nanocrystals investigated by correlated atomic-force and single-particle fluorescence microscopy. Appl Phys Lett, 2002, 80: 4033–4035

    Article  Google Scholar 

  5. Lauhon L J, Gudiksen M S, Wang C L, et al. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature, 2002, 420: 57–61

    Article  Google Scholar 

  6. Jackson J B, Westcott S L, Hirsch L R, et al. Controlling the surface enhanced Raman effect via the nanoshell geometry. Appl Phys Lett, 2003, 82: 257–259

    Article  Google Scholar 

  7. Zeng H, Sun S H, Li J, et al. Tailoring magnetic properties of core/shell nanoparticles. Appl Phys Lett, 2004, 85: 792–794

    Article  Google Scholar 

  8. Rossi G, Rapallo A, Mottet C, et al. Magic polyicosahedral core-shell clusters. Phys Rev Lett, 2004, 93: 105503

    Google Scholar 

  9. Noborisaka J, Motohisa J, Hara S, et al. Fabrication and characterization of freestanding GaAs/AlGaAs core-shell nanowires and Al-GaAs nanotubes by using selective-area metalorganic vapor phase epitaxy. Appl Phys Lett, 2005, 87: 093109

    Article  Google Scholar 

  10. Bauerecker S. Self-diffusion in core-shell composite 12CO2/13CO2 nanoparticles. Phys Rev Lett, 2005, 94: 033404

    Article  Google Scholar 

  11. Gangopadhyay S, Hadjipanayis G C, Dale B, et al. Magnetic properties of ultrafine iron particles. Phys Rev B, 1992, 45: 9778–9787

    Article  Google Scholar 

  12. Prados C, Multigner M, Hemando A, et al. Dependence of exchange anisotropy and coercivity on the Fe-oxide structure in oxygen-passivated Fe nanoparticles. J Appl Phys, 1999, 85: 6118–6120

    Article  Google Scholar 

  13. Rybchenko S I, Fujishio Y, Takagi H, et al. Effect of interface passivation on the magnetoresistance of granular magnetite Fe3(1−δ O4. Appl Phys Lett, 2006, 89: 132509

    Article  Google Scholar 

  14. Zhao K, Feng J F, Huang Y H, et al. Magnetic field dependence of voltage-current characteristics of Fe3O4 thin films at room temperature. Appl Phys Lett, 2006, 88: 052506

    Article  Google Scholar 

  15. Zhao K, Zhang L, Li H, et al. Magnetic coupling in La-Ca-Mn-O/La-Sr-Co-O/La-Ca-Mn-O sandwiches. J Appl Phys, 2004, 95: 7363–7365

    Article  Google Scholar 

  16. Zhao K, Wong H K. Epitaxial growth of platinum thin films on various substrates by facing-target sputtering. J Crys Growth, 2003, 256: 283–287

    Article  Google Scholar 

  17. Bennett K H, Della Torre E. Analysis of wasp-waist hysteresis loops. J Appl Phys, 2005, 97: 10E502

    Article  Google Scholar 

  18. Yanase A, Siratori K. Band structure in the high temperature phase of Fe3O4. J Phys Soc Jpn, 1984, 53: 312–317

    Article  Google Scholar 

  19. Zhang Z, Satpathy S. Electron states, magnetism, and the Verwey transition in magnetite. Phys Rev B, 1991, 44: 13319–13331

    Article  Google Scholar 

  20. Ruf R R, Gambino R J. Iron-iron oxide layer films. J Appl Phys, 1984, 55: 2628–2630

    Article  Google Scholar 

  21. Dimitrov D V, Murthy A S, Hadjipanayis G C, et al. Magnetic properties of exchange-coupled Fe/FeO bilayers. J Appl Phys, 1996, 79: 5106–5108

    Article  Google Scholar 

  22. Del B L, Hernando A, Multigner M, et al. Evidence of spin disorder at the surface-core interface of oxygen passivated Fe nanoparticles. J Appl Phys, 1998, 84: 2189–2192

    Article  Google Scholar 

  23. Hu G, Suzuki Y. Negative spin polarization of Fe3O4 in magnetite/manganite-based junctions. Phys Rev Lett, 2002, 89: 276601

    Article  Google Scholar 

  24. Bowen M, Bibes M, Barthélémy A, et al. Nearly total spin polarization in La2/3Sr1/3MnO3 from tunneling experiments. Appl Phys Lett, 2003, 82: 233–235

    Article  Google Scholar 

  25. Li X W, Gupta A, Xiao G, et al. Fabrication and properties of heteroepitaxial magnetite (Fe3O4) tunnel junctions. Appl Phys Lett, 1998, 73: 3282–3284

    Article  Google Scholar 

  26. Papaefthymiou V, Kostikas A, Simopoulos A, et al. Magnetic hysteresis and Mössbauer studies in ultrafine iron particles. J Appl Phys, 1990, 67: 4487–4489

    Article  Google Scholar 

  27. Xu Y, Ephron D, Beasley M R. Directed inelastic hopping of electrons through metal-insulator-metal tunnel junctions. Phys Rev B, 1995, 52: 2843–2859

    Article  Google Scholar 

  28. Neugebauer C A, Webb M B. Electrical conduction mechanism in ultrathin, evaporated metal films. J Appl Phys, 1962, 33: 74–82

    Article  Google Scholar 

  29. Simmons J G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J Appl Phys, 1963, 34: 1793–1803

    Article  Google Scholar 

  30. Ziese M. Extrinsic magnetotransport phenomena in ferromagnetic oxides. Rep Prog Phys, 2002, 65: 143–249

    Article  Google Scholar 

  31. Rybchenko S I, Fujishio Y, Takagi H, et al. Effect of grain boundaries on the magnetoresistance of magnetite. Phys Rev B, 2005, 72: 054424

    Article  Google Scholar 

  32. Srintiwarawong C, Gehring G A. Tunnelling from Fe3O4. J Phys Condens Matter, 2001, 13: 7987–7998

    Article  Google Scholar 

  33. Dowben P A, Skomski R. Are half-metallic ferromagnets half metals? J Appl Phys, 2004, 95: 7453–7458

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Kun.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 50672132 and 60576015) and the Key Project of Chinese Ministry of Education (Grant No. 107020)

About this article

Cite this article

Zhao, K., Xing, J., Liu, Y. et al. Low-field positive and high-field negative magneto-resistances in multiphase Fe-oxide thin films at room temperature. CHINESE SCI BULL 52, 1607–1611 (2007). https://doi.org/10.1007/s11434-007-0233-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0233-x

Keywords

Navigation