Skip to main content
Log in

Identification and evolutionary implication of four novel box H/ACA snoRNAs from Giardia lamblia

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

From a specialized cDNA library, four novel box H/ACA snoRNAs, named GLsR22, GLsR23, GLsR24 and GLsR25, were identified from the primitive eukaryote, Giardia lamblia. Bioinformatics analyses indicated that all of them can be potentially folded into double hairpins, the typical secondary structures of box H/ACA snoRNAs. GLsR24 and GLsR25 are predicted to guide the site-specific pseudouridylation at U1753 and U2396 on 23S rRNA, respectively, while GLsR22 and GLsR23 belong to the family of “orphan” snoRNAs. All of the four novel snoRNAs are encoded by single copy genes and located in small intergenic regions. Interestingly, compared with the counterparts previously reported in Archaea and other unicellular protozoan, the box H/ACA snoRNAs identified from G. lamblia have unique structural features, implying that snoRNAs evolved from prokaryotes to eukaryotes in different ways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Maden B E. The numerous modified nucleotides in eukaryotic ribosomal RNA. Nucl Acid Res Mol Biol, 1990, 39: 241–303

    Article  Google Scholar 

  2. Bachellerie J P, Cavaillé J. Small nucleolar RNAs guide the ribose methylations of eukaryotic rRNAs. In: Grosjean H, Benne R, eds. Modification and Editing of RNA: The Alteration of RNA Structure and Function. Washington DC: ASM Press, 1998. 255–272

    Google Scholar 

  3. Ofengand J, Fournier M J. The pseudouridine residues of rRNA: Number, location, biosynthesis and function. In: Grosjean H, Benne R, eds. Modification and Editing of RNA: The Alteration of RNA Structure and Function. Washington DC: ASM Press, 1998. 229–253

    Google Scholar 

  4. Balakin A G, Smith L, Fournier M J. The RNA world of the nucleolus: Two major families of small RNAs defined by different box elements with related functions. Cell, 1996, 86: 823–834

    Article  Google Scholar 

  5. Kiss-Laszlo Z, Henry Y, Kiss T. Sequence and structural elements of methylation guide snoRNAs essential for site-specific ribose methylation of pre-rRNA. EMBO J, 1998, 17: 797–807

    Article  Google Scholar 

  6. Tycowski K T, Shu M D, Steitz J A. A mammalian gene with introns instead of exons generating stable RNA products. Nature, 1996, 379: 464–466

    Article  Google Scholar 

  7. Kiss-László Z, Henry Y, Bachellerie J P, et al. Site-specific ribose methylation of preribosomal RNA: A novel function for small nucleolar RNAs. Cell, 1996, 85: 1077–1088

    Article  Google Scholar 

  8. Cavaille J, Nicoloso M, Bachellerie J P. Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature, 1996, 383: 732–735

    Article  Google Scholar 

  9. Ganot P, Caizergues-Ferrer M, Kiss T. The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev, 1997, 11: 941–956

    Google Scholar 

  10. Ganot P, Bortolin M L, Kiss, T. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell, 1997, 89: 799–809

    Article  Google Scholar 

  11. Bortolin M L, Ganot P, Kiss T. Elements essential for accumulation and function of small nucleolar RNAs directing site-specific pseudouridylation of ribosomal RNAs. EMBO J, 1999, 18: 457–469

    Article  Google Scholar 

  12. John W S, Manuel E, Qu L H. Plant snoRNAs: Functional evolution and new models of gene expression. Trends Plant Sci, 2003, 8: 42–49

    Article  Google Scholar 

  13. Darzacq X, Jady B E, Verheggen C, et al. Cajal body-specific small nucleolar RNAs: A novel class of 2′-O-methylation and psedouridylation guide RNAs. EMBO J, 2002, 21: 2746–2756

    Article  Google Scholar 

  14. Zhou H, Chen Y Q, Du Y P, et al. Schizosaccharomyces pombe mgU6-47 snoRNA is required for the methylation of U6 snRNA at 41. Nucleic Acids Res, 2002, 30: 894–902

    Article  Google Scholar 

  15. Kiss A M, Jady B E, Darzacq X, et al. A Cajal body-specific pseudouridylation guide RNA is composed of two box H/ACA snoRNA-like domains. Nucleic Acids Res, 2002, 30: 4643–4649

    Article  Google Scholar 

  16. Massenet S, Mougin A, Branlant C. Posttranscriptional modifications in the U snRNAs. In: Grosjean H, Benne R, eds. Modification and Editing of RNA: The Alteration of RNA Structure and Function. Washington, DC: ASM Press, 1998. 201–228

    Google Scholar 

  17. Burns C M, Chu H, Rueter S M, et al. Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature, 1997, 387: 303–308

    Article  Google Scholar 

  18. Vitali P, Basyuk, E, le Meur E, et al. ADAR2-mediated editing of RNA substrates in the nucleolus is inhibited by C/D small nucleolar RNAs. J Cell Biol, 2005, 169: 745–753

    Article  Google Scholar 

  19. Kishore S, Stamm S. The snoRNA HB II-52 regulates alternative splicing of the serotonin receptor 2C. Science, 2006, 311: 230–232

    Article  Google Scholar 

  20. Clouet d’Orval B, Bortolin M L, Gaspin C, et al. Box C/D RNA guides for the ribose methylation of archaeal tRNAs. The tRNATrp intron guides the formation of two ribose-methylated nucleotides in the mature tRNATrp. Nucleic Acids Res, 2001, 29: 4518–4529

    Article  Google Scholar 

  21. Gaspin C, Cavaillé J, Erauso G, et al. Archaeal homologs of eukaryotic methylation guide small neucleolar RNAs: Lessons from the Pyrococcus Genomes. J Mol Biol, 2000, 297: 895–906

    Article  Google Scholar 

  22. Tang T H, Bachellerie J P, Rozhdestvensky T. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc Natl Acad Sci USA, 2002, 99: 7536–7541

    Article  Google Scholar 

  23. Adam R D. Biology of Giardia lamblia. Clin Microbiol Rev, 2001, 14: 447–475

    Article  Google Scholar 

  24. Sogin M L, Gunderson J H, Elwood H J, et al. Phylogenetic meaning of the kingdom concept: An unusual ribosomal RNA from Giardia lamblia. Science, 1989, 243: 75–77

    Article  Google Scholar 

  25. Kabnick K S, Peattie D A. Giardia: A missing link between prokaryotes and eukaryotes. American Scientist, 1991, 79: 36–43

    Google Scholar 

  26. He D, Dong J H, Wen J F, et al. Phylogenetic positions of several amitochondriate protozoa—Evidence from phylogenetic analysis of DNA topoisomerase II. Sci China Ser C-Life Sci, 2005, 35(2): 115–122

    Google Scholar 

  27. Graczyk T K. Is Giardia a living fossil? Trends Parasitol, 2005, 21: 104–107

    Article  Google Scholar 

  28. He D, Wen J F, Chen W Q, et al. Identification, characteristic and phylogenetic analysis of type II DNA topoisomerase gene in Giardia lamblia. Cell Res, 2005, 15: 474–482

    Article  Google Scholar 

  29. Xin D D, Wen J F, He D, et al. Identification of a Giardia krr1 homolog gene and the secondarily anucleolate condition of Giaridia lamblia. Mol Biol Evol, 2005, 22: 391–394

    Article  Google Scholar 

  30. Yang C Y, Zhou H, Luo J, et al. Identification of 20 snoRNA-like RNAs from the primitive eukaryote, Giardia lamblia. Biochem Biophys Res Commun, 2005, 328: 1224–1231

    Article  Google Scholar 

  31. Keister D B. Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Sot Trop Med Hyg, 1983, 77: 487–488

    Article  Google Scholar 

  32. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem, 1987, 162: 732–735

    Article  Google Scholar 

  33. Schattner P, Decatur W A, Davis C A, et al. Genome-wide searching for pseudouridylation guide snoRNAs—Analysis of the Saccharomyces cerevisiae genome. Nucleic Acids Res, 2004, 32: 4281–4296

    Article  Google Scholar 

  34. Uliei S, Liang X H, Unger R, et al. Small nucleolar RNAs that guide modification in trypanosomatids: repertoire, targets, genome organization, and functions. Int J Parasitol, 2004, 34: 445–454

    Article  Google Scholar 

  35. Liang X H, Uliel S, Hury A, et al. Genome-wide analysis of C/D and H/ACA-like small nucleolar RNAs in Trypanosoma brucei reveals a trypanosome-specific pattern of rRNA modification. RNA, 2005, 11: 619–645

    Article  Google Scholar 

  36. Russell A G, Schnare M N, Gray M W. Pseudouridine-guide RNAs and other Cbf5p-associated RNAs in Euglena gracilis. RNA, 2004, 10: 1034–1046

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qu Lianghu.

About this article

Cite this article

Luo, J., Zhou, H., Chen, C. et al. Identification and evolutionary implication of four novel box H/ACA snoRNAs from Giardia lamblia . CHINESE SCI BULL 51, 2451–2456 (2006). https://doi.org/10.1007/s11434-006-2131-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-006-2131-z

Keywords

Navigation