Skip to main content
Log in

Visualizing the charge order and topological defects in an overdoped (Bi,Pb)2Sr2CuO6+x superconductor

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Electronic charge order is a symmetry breaking state in high-Tc cuprate superconductors. In scanning tunneling microscopy, the detected charge-order-induced modulation is an electronic response of the charge order. For an overdoped (Bi,Pb)2Sr2CuO6+x sample, we apply scanning tunneling microscopy to explore local properties of the charge order. The ordering wavevector is non-dispersive with energy, which can be confirmed and determined. By extracting its order-parameter field, we identify dislocations in the stripe structure of the electronic modulation, which correspond to topological defects with an integer winding number of ±1. Through differential conductance maps over a series of reduced energies, the development of different response of the charge order is observed and a spatial evolution of topological defects is detected. The intensity of charge-order-induced modulation increases with energy and reaches its maximum when approaching the pseudogap energy. In this evolution, the topological defects decrease in density and migrate in space. Furthermore, we observe appearance and disappearance of closely spaced pairs of defects as energy changes. Our experimental results could inspire further studies of the charge order in both high-Tc cuprate superconductors and other charge density wave materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, Nature 518, 179 (2015).

    Article  ADS  Google Scholar 

  2. T. Timusk, and B. Statt, Rep. Prog. Phys. 62, 61 (1999).

    Article  ADS  Google Scholar 

  3. M. Vojta, Adv. Phys. 58, 699 (2009).

    Article  ADS  Google Scholar 

  4. P. Cai, W. Ruan, Y. Y. Peng, C. Ye, X. T. Li, Z. Q. Hao, X. J. Zhou, D. H. Lee, and Y. Y. Wang, Nat. Phys. 12, 1047 (2016), arXiv: 1508.05586.

    Article  Google Scholar 

  5. G. Grüner, Density Waves in Solids (Perseus Publishing, Cambridge, Massachusetts, 1994).

    Google Scholar 

  6. Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, Science 315, 1380 (2007).

    Article  ADS  Google Scholar 

  7. C. V. Parker, P. Aynajian, E. H. da Silva Neto, A. Pushp, S. Ono, J. S. Wen, Z. J. Xu, G. D. Gu, and A. Yazdani, Nature 468, 677 (2010), arXiv: 1012.0340.

    Article  ADS  Google Scholar 

  8. Y. Kohsaka, C. Taylor, P. Wahl, A. Schmidt, J. Lee, K. Fujita, J. W. Alldredge, K. McElroy, J. Lee, H. Eisaki, S. Uchida, D. H. Lee, and J. C. Davis, Nature 454, 1072 (2008).

    Article  ADS  Google Scholar 

  9. A. Mesaros, K. Fujita, H. Eisaki, S. Uchida, J. C. Davis, S. Sachdev, J. Zaanen, M. J. Lawler, and E. A. Kim, Science 333, 426 (2011), arXiv: 1108.0487.

    Article  ADS  Google Scholar 

  10. K. Fujita, C. K. Kim, I. Lee, J. H. Lee, M. H. Hamidian, I. A. Firmo, S. Mukhopadhyay, H. Eisaki, S. Uchida, M. J. Lawler, E. A. Kim, and J. C. Davis, Science 344, 612 (2014), arXiv: 1403.7788.

    Article  ADS  Google Scholar 

  11. M. J. Lawler, K. Fujita, J. Lee, A. R. Schmidt, Y. Kohsaka, C. K. Kim, H. Eisaki, S. Uchida, J. C. Davis, J. P. Sethna, and E. A. Kim, Nature 466, 347 (2010), arXiv: 1007.3216.

    Article  ADS  Google Scholar 

  12. K. Fujita, M. H. Hamidian, S. D. Edkins, C. K. Kim, Y. Kohsaka, M. Azuma, M. Takano, H. Takagi, H. Eisaki, S. Uchida, A. Allais, M. J. Lawler, E. A. Kim, S. Sachdev, and J. C. S. Davis, Proc. Natl. Acad. Sci. 111, E3026 (2014), arXiv: 1404.0362.

    Article  Google Scholar 

  13. M. H. Hamidian, S. D. Edkins, C. K. Kim, J. C. Davis, A. P. Mackenzie, H. Eisaki, S. Uchida, M. J. Lawler, E. A. Kim, S. Sachdev, and K. Fujita, Nat. Phys. 12, 150 (2016), arXiv: 1507.07865.

    Article  Google Scholar 

  14. A. Mesaros, K. Fujita, S. D. Edkins, M. H. Hamidian, H. Eisaki, S. Uchida, J. C. S. Davis, M. J. Lawler, and E. A. Kim, Proc. Natl. Acad. Sci. 113, 12661 (2016).

    Article  Google Scholar 

  15. J. E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002).

    Article  ADS  Google Scholar 

  16. M. Vershinin, S. Misra, S. Ono, Y. Abe, Y. Ando, and A. Yazdani, Science 303, 1995 (2004).

    Article  ADS  Google Scholar 

  17. E. H. da Silva Neto, P. Aynajian, A. Frano, R. Comin, E. Schierle, E. Weschke, A. Gyenis, J. Wen, J. Schneeloch, Z. Xu, S. Ono, G. Gu, M. Le Tacon, and A. Yazdani, Science 343, 393 (2014), arXiv: 1312.1347.

    Article  ADS  Google Scholar 

  18. W. D. Wise, M. C. Boyer, K. Chatterjee, T. Kondo, T. Takeuchi, H. Ikuta, Y. Wang, and E. W. Hudson, Nat. Phys. 4, 696 (2008), arXiv: 0806.0203.

    Article  Google Scholar 

  19. W. D. Wise, K. Chatterjee, M. C. Boyer, T. Kondo, T. Takeuchi, H. Ikuta, Z. Xu, J. Wen, G. D. Gu, Y. Wang, and E. W. Hudson, Nat. Phys. 5, 213 (2009), arXiv: 0811.1585.

    Article  Google Scholar 

  20. T. A. Webb, M. C. Boyer, Y. Yin, D. Chowdhury, Y. He, T. Kondo, T. Takeuchi, H. Ikuta, E. W. Hudson, J. E. Hoffman, and M. H. Hamidian, Phys. Rev. X 9, 021021 (2019).

    Google Scholar 

  21. R. Comin, A. Frano, M. M. Yee, Y. Yoshida, H. Eisaki, E. Schierle, E. Weschke, R. Sutarto, F. He, A. Soumyanarayanan, Y. He, M. Le Tacon, I. S. Elfimov, J. E. Hoffman, G. A. Sawatzky, B. Keimer, and A. Damascelli, Science 343, 390 (2014), arXiv: 1312.1343.

    Article  ADS  Google Scholar 

  22. Y. Y. Peng, R. Fumagalli, Y. Ding, M. Minola, S. Caprara, D. Betto, M. Bluschke, G. M. De Luca, K. Kummer, E. Lefrancois, M. Salluzzo, H. Suzuki, M. Le Tacon, X. J. Zhou, N. B. Brookes, B. Keimer, L. Braicovich, M. Grilli, and G. Ghiringhelli, Nat. Mater. 17, 697 (2018), arXiv: 1705.06165.

    Article  ADS  Google Scholar 

  23. Y. Y. Peng, M. Salluzzo, X. Sun, A. Ponti, D. Betto, A. M. Ferretti, F. Fumagalli, K. Kummer, M. Le Tacon, X. J. Zhou, N. B. Brookes, L. Braicovich, and G. Ghiringhelli, Phys. Rev. B 94, 184511 (2016), arXiv: 1610.01823.

    Article  ADS  Google Scholar 

  24. R. Comin, R. Sutarto, F. He, E. H. da Silva Neto, L. Chauviere, A. Fraño, R. Liang, W. N. Hardy, D. A. Bonn, Y. Yoshida, H. Eisaki, A. J. Achkar, D. G. Hawthorn, B. Keimer, G. A. Sawatzky, and A. Damascelli, Nat. Mater. 14, 796 (2015), arXiv: 1402.5415.

    Article  ADS  Google Scholar 

  25. J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen, J. Larsen, J. Mesot, R. Liang, D. A. Bonn, W. N. Hardy, A. Watenphul, M. Zimmermann, E. M. Forgan, and S. M. Hayden, Nat. Phys. 8, 871 (2012), arXiv: 1206.4333.

    Article  Google Scholar 

  26. T. Wu, H. Mayaffre, S. Krämer, M. Horvatić, C. Berthier, W. N. Hardy, R. Liang, D. A. Bonn, and M. H. Julien, Nature 477, 191 (2011), arXiv: 1109.2011.

    Article  ADS  Google Scholar 

  27. Ø. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C. Renner, Rev. Mod. Phys. 79, 353 (2007).

    Article  ADS  Google Scholar 

  28. Y. He, Y. Yin, M. Zech, A. Soumyanarayanan, M. M. Yee, T. Williams, M. C. Boyer, K. Chatterjee, W. D. Wise, I. Zeljkovic, T. Kondo, T. Takeuchi, H. Ikuta, P. Mistark, R. S. Markiewicz, A. Bansil, S. Sachdev, E. W. Hudson, and J. E. Hoffman, Science 344, 608 (2014), arXiv: 1305.2778.

    Article  ADS  Google Scholar 

  29. Y. Zheng, Y. Fei, K. L. Bu, W. H. Zhang, Y. Ding, X. J. Zhou, J. E. Hoffman, and Y. Yin, Sci. Rep. 7, 8059 (2017).

    Article  ADS  Google Scholar 

  30. L. Zhao, W. T. Zhang, H. Y. Liu, J. Q. Meng, G. D. Liu, W. Lu, X. L. Dong, and X. J. Zhou, Chin. Phys. Lett. 27, 087401 (2010).

    Article  ADS  Google Scholar 

  31. Y. Ando, Y. Hanaki, S. Ono, T. Murayama, K. Segawa, N. Miyamoto, and S. Komiya, Phys. Rev. B 61, R14956 (2000).

    Article  ADS  Google Scholar 

  32. Y. Fei, K. L. Bu, W. H. Zhang, Y. Zheng, X. Sun, Y. Ding, X. J. Zhou, and Y. Yin, Sci. China-Phys. Mech. Astron. 61, 127404 (2018), arXiv: 1803.03400.

    Article  ADS  Google Scholar 

  33. M. H. Hamidian, I. A. Firmo, K. Fujita, S. Mukhopadhyay, J. W. Orenstein, H. Eisaki, S. Uchida, M. J. Lawler, E. A. Kim, and J. C. Davis, New J. Phys. 14, 053017 (2012), arXiv: 1202.4320.

    Article  ADS  Google Scholar 

  34. X. T. Li, Y. Ding, C. C. He, W. Ruan, P. Cai, C. Ye, Z. Q. Hao, L. Zhao, X. J. Zhou, Q. H. Wang, and Y. Y. Wang, New J. Phys. 20, 063041 (2018), arXiv: 1905.02436.

    Article  ADS  Google Scholar 

  35. P. M. Chaikin, and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995).

    Book  Google Scholar 

  36. M. Tinkham, Introduction to Superconductivity, 2nd ed. (Courier Corporation, New York, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Zheng or Yi Yin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, Y., Zheng, Y., Bu, K. et al. Visualizing the charge order and topological defects in an overdoped (Bi,Pb)2Sr2CuO6+x superconductor. Sci. China Phys. Mech. Astron. 63, 227411 (2020). https://doi.org/10.1007/s11433-019-9454-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-9454-6

Keywords

Navigation