Skip to main content
Log in

A mechanically tuned Kerr comb in a dispersion-engineered silica microbubble resonator

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

This paper discusses the developement and investigation of a silica microbubble resonator (MBR) that is optimized to cancel mode dispersion with material dispersion, at a wavelength of approximately 1550 nm and maintain a quality factor of an optical mode as large as 5.4 × 107. Benefitting from the near-zero dispersion and high quality factor, a primary optical comb is generated in the MBR using cascaded four-wave mixing processes, which span over 300 nm with several tens of teeth. Furthermore, the frequency comb could be gradually tuned by mechanically stretching the MBR. This tunable Kerr comb has multiple potential applications in precision measurements and sensing applications, such as molecular spectroscopy and ranging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Photon. 8, 145 (2014).

    Article  ADS  Google Scholar 

  2. M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, Science 354, 600 (2016).

    Article  ADS  Google Scholar 

  3. J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, Nat. Photon. 8, 375 (2014).

    Article  ADS  Google Scholar 

  4. N. G. Pavlov, G. Lihachev, S. Koptyaev, E. Lucas, M. Karpov, N. M. Kondratiev, I. A. Bilenko, T. J. Kippenberg, and M. L. Gorodetsky, Opt. Lett. 42, 514 (2017).

    Article  ADS  Google Scholar 

  5. P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, Nature 546, 274 (2017).

    Article  ADS  Google Scholar 

  6. A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, Opt. Express 13, 9029 (2005).

    Article  ADS  Google Scholar 

  7. N. Coluccelli, M. Cassinerio, B. Redding, H. Cao, P. Laporta, and G. Galzerano, Nat. Commun. 7, 12995 (2016).

    Article  ADS  Google Scholar 

  8. J. L. Hall, Rev. Mod. Phys. 78, 1279 (2006).

    Article  ADS  Google Scholar 

  9. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).

    Article  ADS  Google Scholar 

  10. M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, and A. L. Gaeta, Optica 3, 854 (2016).

    Article  ADS  Google Scholar 

  11. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555 (2011).

    Article  ADS  Google Scholar 

  12. M. Li, X. Wu, L. Liu, and L. Xu, Opt. Express 21, 16908 (2013).

    Article  ADS  Google Scholar 

  13. Z. Z. Hao, L. Zhang, A. Gao, W. B. Mao, X. D. Lyu, X. M. Gao, F. Bo, F. Gao, G. Q. Zhang, and J. J. Xu, Sci. China-Phys. Mech. Astron. 61, 114211 (2018).

    Article  ADS  Google Scholar 

  14. L. H. Chen, G. Y. Chen, R. M. Liu, and X. H. Wang, Sci. China-Phys. Mech. Astron. 62, 974211 (2019).

    Article  ADS  Google Scholar 

  15. W. Zhao, S. D. Zhang, A. Miranowicz, and H. Jing, Sci. China-Phys. Mech. Astron. 63, 224211 (2020).

    Article  ADS  Google Scholar 

  16. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Phys. Rev. Lett. 93, 083904 (2004).

    Article  ADS  Google Scholar 

  17. I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, Phys. Rev. A 76, 043837 (2007).

    Article  ADS  Google Scholar 

  18. Y. Yang, Y. Ooka, R. M. Thompson, J. M. Ward, and S. N. Chormaic, Opt. Lett. 41, 575 (2016).

    Article  ADS  Google Scholar 

  19. X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, Science 358, 344 (2017).

    Article  ADS  Google Scholar 

  20. R. Niu, S. Wan, S.-M. Sun, T.-G. Ma, W.-Q. Wang, Z.-Z. Lu, W.-F. Zhang, G.-C. Guo, C.-L. Zou, and C.-H. Dong, arXiv: 1809.06490.

  21. Z. Lu, W. Wang, W. Zhang, S. T. Chu, B. E. Little, M. Liu, L. Wang, C. L. Zou, C. H. Dong, B. Zhao, and W. Zhao, AIP Adv. 9, 025314 (2019).

    Article  ADS  Google Scholar 

  22. J. Ma, L. Xiao, J. Gu, H. Li, X. Cheng, G. He, X. Jiang, and M. Xiao, Photon. Res. 7, 573 (2019).

    Article  Google Scholar 

  23. Q. H. Song, Sci. China-Phys. Mech. Astron. 62, 074231 (2019).

    Article  Google Scholar 

  24. J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, L. Qiao, W. Fang, F. Bo, and Y. Cheng, Phys. Rev. Lett. 122, 173903 (2019).

    Article  ADS  Google Scholar 

  25. H. Wang, and J. Nöcke, Sci. China-Phys. Mech. Astron. 61, 014231 (2018).

    Article  ADS  Google Scholar 

  26. L. K. Chen, and Y. F. Xiao, Sci. China-Phys. Mech. Astron. 63, 224231 (2020).

    Article  ADS  Google Scholar 

  27. N. Riesen, S. Afshar V., A. François, and T. M. Monro, Opt. Express 23, 14784 (2015).

    Article  ADS  Google Scholar 

  28. Y. Yang, S. Saurabh, J. M. Ward, and S. N. Chormaic, Opt. Express 24, 294 (2016).

    Article  ADS  Google Scholar 

  29. Z. H. Zhou, F. J. Shu, Z. Shen, C. H. Dong, and G. C. Guo, Sci. China-Phys. Mech. Astron. 58, 114208 (2015).

    Article  Google Scholar 

  30. G. Zhao, K. Özdemir, T. Wang, L. Xu, E. King, G. L. Long, and L. Yang, Sci. Bull. 62, 875 (2017).

    Article  Google Scholar 

  31. Z. H. Zhou, C. L. Zou, Y. Chen, Z. Shen, G. C. Guo, and C. H. Dong, Opt. Express 25, 4046 (2017).

    Article  ADS  Google Scholar 

  32. X. Xue, Y. Xuan, C. Wang, P. H. Wang, Y. Liu, B. Niu, D. E. Leaird, M. Qi, and A. M. Weiner, Opt. Express 24, 687 (2016).

    Article  ADS  Google Scholar 

  33. M. Sumetsky, Y. Dulashko, and R. S. Windeler, Opt. Lett. 35, 1866 (2010).

    Article  ADS  Google Scholar 

  34. X. Guo, C. L. Zou, H. Jung, Z. Gong, A. Bruch, L. Jiang, and H. X. Tang, Phys. Rev. Appl. 10, 014012 (2018).

    Article  ADS  Google Scholar 

  35. P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Phys. Rev. Lett. 107, 063901 (2011).

    Article  ADS  Google Scholar 

  36. S. A. Miller, Y. Okawachi, S. Ramelow, K. Luke, A. Dutt, A. Farsi, A. L. Gaeta, and M. Lipson, Opt. Express 23, 21527 (2015).

    Article  ADS  Google Scholar 

  37. N. Riesen, W. Q. Zhang, and T. M. Monro, Opt. Lett. 41, 1257 (2016).

    Article  ADS  Google Scholar 

  38. N. Riesen, W. Q. Zhang, and T. M. Monro, Opt. Express 24, 8832 (2016).

    Article  ADS  Google Scholar 

  39. D. Farnesi, A. Barucci, G. C. Righini, G. N. Conti, and S. Soria, Opt. Lett. 40, 4508 (2015).

    Article  ADS  Google Scholar 

  40. P. Wang, J. Ward, Y. Yang, X. Feng, G. Brambilla, G. Farrell, and S. N. Chormaic, Appl. Phys. Lett. 106, 061101 (2015).

    Article  ADS  Google Scholar 

  41. Q. Lu, S. Liu, X. Wu, L. Liu, and L. Xu, Opt. Lett. 41, 1736 (2016).

    Article  ADS  Google Scholar 

  42. Y. Yang, X. Jiang, S. Kasumie, G. Zhao, L. Xu, J. M. Ward, L. Yang, and S. N. Chormaic, Opt. Lett. 41, 5266 (2016).

    Article  ADS  Google Scholar 

  43. V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, Science 351, 357 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  44. A. Meldrum, and F. Marsiglio, Rev. Nanosci. Nanotech. 3, 193 (2014).

    Article  Google Scholar 

  45. Y. Okawachi, M. Yu, V. Venkataraman, P. M. Latawiec, A. G. Griffith, M. Lipson, M. Loncar, and A. L. Gaeta, Opt. Lett. 42, 2786 (2017).

    Article  Google Scholar 

  46. Y. Chen, Z. H. Zhou, C. L. Zou, Z. Shen, G. C. Guo, and C. H. Dong, Opt. Express 25, 16879 (2017).

    Article  ADS  Google Scholar 

  47. W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefévre-Seguin, Opt. Lett. 26, 166 (2001).

    Article  ADS  Google Scholar 

  48. Y. Z. Yan, C. L. Zou, S. B. Yan, F. W. Sun, Z. Ji, J. Liu, Y. G. Zhang, L. Wang, C. Y. Xue, W. D. Zhang, Z. F. Han, and J. J. Xiong, Opt. Express 19, 5753 (2011).

    Article  ADS  Google Scholar 

  49. Z. Shen, Z. H. Zhou, C. L. Zou, F. W. Sun, G. P. Guo, C. H. Dong, and G. C. Guo, Photon. Res. 3, 243 (2015).

    Article  Google Scholar 

  50. T. Tang, X. Wu, L. Liu, and L. Xu, Appl. Opt. 55, 395 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChunHua Dong.

Additional information

This work was supported by the National Key R&D Program of China (Grant No. 2016YFA0301303), the Anhui Initiative in Quantum Information Technologies (Grant No. AHY130200), the National Natural Science Foundation of China (Grant Nos. 11934012, 61575184, and 11722436), the Fundamental Research Funds for the Central Universities, and the Key Science and Technology Program of Henan Province, China (Grant No. 182102410070). This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, F., Zhang, P., Qian, Y. et al. A mechanically tuned Kerr comb in a dispersion-engineered silica microbubble resonator. Sci. China Phys. Mech. Astron. 63, 254211 (2020). https://doi.org/10.1007/s11433-019-1464-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1464-8

Keywords

Navigation