Skip to main content
Log in

Exact solution to a class of generalized Kitaev spin-1/2 models in arbitrary dimensions

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We construct a class of exactly solvable generalized Kitaev spin-1/2 models in arbitrary dimensions, which is beyond the category of quantum compass models. The Jordan-Wigner transformation is employed to prove the exact solvability. An exactly solvable quantum spin-1/2 model can be mapped to a gas of free Majorana fermions coupled to static Z2 gauge fields. We classify these exactly solvable models according to their parent models. Any model belonging to this class can be generated by one of the parent models. For illustration, a two dimensional (2D) tetragon-octagon model and a three dimensional (3D) xy bond model are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kitaev, Ann. Phys. 321, 2 (2006).

    Article  ADS  Google Scholar 

  2. A. Y. Kitaev, Ann. Phys. 303, 2 (2003).

    Article  ADS  Google Scholar 

  3. C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008), arXiv: 0707.1889.

    Article  ADS  Google Scholar 

  4. R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

    Article  ADS  Google Scholar 

  5. G. Moore, and N. Read, Nucl. Phys. B 360, 362 (1991).

    Article  ADS  Google Scholar 

  6. X. Y. Feng, G. M. Zhang, and T. Xiang, Phys. Rev. Lett. 98, 087204 (2007).

    Article  ADS  Google Scholar 

  7. H. D. Chen, and J. Hu, Phys. Rev. B 76, 193101 (2007).

    Article  ADS  Google Scholar 

  8. H. D. Chen, and Z. Nussinov, J. Phys. A-Math. Theor. 41, 075001 (2008).

    Article  ADS  Google Scholar 

  9. Z. Chen, X. Li, and T. K. Ng, Phys. Rev. Lett. 120, 046401 (2018), arXiv: 1709.08411.

    Article  ADS  Google Scholar 

  10. M. Ezawa, Phys. Rev. B 97, 241113 (2018), arXiv: 1710.10762.

    Article  ADS  Google Scholar 

  11. Z. Nussinov, and G. Ortiz, Phys. Rev. B 79, 214440 (2009), arXiv: 0812.4309.

    Article  ADS  Google Scholar 

  12. H. Yao, and S. A. Kivelson, Phys. Rev. Lett. 99, 247203 (2007), arXiv: 0708.0040.

    Article  ADS  Google Scholar 

  13. S. Yang, D. L. Zhou, and C. P. Sun, Phys. Rev. B 76, 180404 (2007), arXiv: 0708.0676.

    Article  ADS  Google Scholar 

  14. G. Kells, J. Kailasvuori, J. K. Slingerland, and J. Vala, New J. Phys. 13, 095014 (2011), arXiv: 1012.5276.

    Article  ADS  Google Scholar 

  15. G. Baskaran, G. Santhosh, and R. Shankar, arXiv: 0908.1614.

  16. K. S. Tikhonov, and M. V. Feigel’man, Phys. Rev. Lett. 105, 067207 (2010), arXiv: 1003.0992.

    Article  ADS  Google Scholar 

  17. T. Si, and Y. Yu, arXiv: 0709.1302.

  18. S. Ryu, Phys. Rev. B 79, 075124 (2009), arXiv: 0811.2036.

    Article  ADS  Google Scholar 

  19. S. Mandal, and N. Surendran, Phys. Rev. B 79, 024426 (2009), arXiv: 0801.0229.

    Article  ADS  Google Scholar 

  20. M. Hermanns, and S. Trebst, Phys. Rev. B 89, 235102 (2014), arXiv: 1401.7678.

    Article  ADS  Google Scholar 

  21. M. Hermanns, K. O’Brien, and S. Trebst, Phys. Rev. Lett. 114, 157202 (2015), arXiv: 1411.7379.

    Article  ADS  Google Scholar 

  22. K. O’Brien, M. Hermanns, and S. Trebst, Phys. Rev. B 93, 085101 (2016), arXiv: 1511.05569.

    Article  ADS  Google Scholar 

  23. I. Kimchi, J. G. Analytis, and A. Vishwanath, Phys. Rev. B 90, 205126 (2014), arXiv: 1309.1171.

    Article  ADS  Google Scholar 

  24. J. Nasu, M. Udagawa, and Y. Motome, Phys. Rev. Lett. 113, 197205 (2014), arXiv: 1406.5415.

    Article  ADS  Google Scholar 

  25. D. H. Lee, G. M. Zhang, and T. Xiang, Phys. Rev. Lett. 99, 196805 (2007), arXiv: 0705.3499.

    Article  ADS  Google Scholar 

  26. Y. Yu, and Z. Wang, Europhys. Lett. 84, 57002 (2008), arXiv: 0708.0631.

    Article  ADS  Google Scholar 

  27. F. Wang, Phys. Rev. B 81, 184416 (2010), arXiv: 1001.0266.

    Article  ADS  Google Scholar 

  28. H. Yao, and D. H. Lee, Phys. Rev. Lett. 107, 087205 (2011), arXiv: 1010.3724.

    Article  ADS  Google Scholar 

  29. H. H. Lai, and O. I. Motrunich, Phys. Rev. B 83, 155104 (2011), arXiv: 1012.5677.

    Article  ADS  Google Scholar 

  30. H. Yao, S. C. Zhang, and S. A. Kivelson, Phys. Rev. Lett. 102, 217202 (2009), arXiv: 0810.5347.

    Article  ADS  Google Scholar 

  31. C. Wu, D. Arovas, and H. H. Hung, Phys. Rev. B 79, 134427 (2009), arXiv: 0811.1380.

    Article  ADS  Google Scholar 

  32. G. W. Chern, Phys. Rev. B 81, 125134 (2010), arXiv: 0912.4020.

    Article  ADS  Google Scholar 

  33. V. Chua, H. Yao, and G. A. Fiete, Phys. Rev. B 83, 180412 (2011), arXiv: 1010.1035.

    Article  ADS  Google Scholar 

  34. R. Nakai, S. Ryu, and A. Furusaki, Phys. Rev. B 85, 155119 (2012), arXiv: 1111.1230.

    Article  ADS  Google Scholar 

  35. Z. Nussinov, and J. van den Brink, Rev. Mod. Phys. 87, 1 (2015).

    Article  ADS  Google Scholar 

  36. J. J. Miao, H. K. Jin, F. C. Zhang, and Y. Zhou, Phys. Rev. Lett. 118, 267701 (2017), arXiv: 1610.04485.

    Article  ADS  MathSciNet  Google Scholar 

  37. J. J. Miao, H. K. Jin, F. Wang, F. C. Zhang, and Y. Zhou, Phys. Rev. B 99, 155105 (2019), arXiv: 1806.06495.

    Article  ADS  Google Scholar 

  38. T. Fukui, Y. Hatsugai, and H. Suzuki, J. Phys. Soc. Jpn. 74, 1674 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhou.

Additional information

JianJian Miao is supported by the China Postdoctoral Science Foundation of China (Grant No. 2017M620880), and the National Natural Science Foundation of China (Grant No. 1184700424). Yi Zhou is supported by the National Key Research and Development Program of China (Grant No. 2016YFA0300202), the National Basic Research Program of China (Grant No. 2014CB921201), the National Natural Science Foundation of China (Grant No. 11774306), the Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB08-4), and the Fundamental Research Funds for the Central Universities in China. FuChun Zhang is supported by the National Natural Science Foundation of China (Grant No. 11674278), the National Basic Research Program of China (Grant No. 2014CB921203), and the CAS Center for Excellence in Topological Quantum Computation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, J., Jin, H., Zhang, F. et al. Exact solution to a class of generalized Kitaev spin-1/2 models in arbitrary dimensions. Sci. China Phys. Mech. Astron. 63, 247011 (2020). https://doi.org/10.1007/s11433-019-1442-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1442-2

Keywords

Navigation