Skip to main content
Log in

Enhanced sampling based on slow variables of trajectory mapping

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Most current enhanced sampling (ES) algorithms attempt to bias a potential energy surface based on preset slow collective variables to improve simulation efficiency. However, due to difficulty in obtaining slow variables in complex molecular systems, approximate slow variables are usually applied in ES, which often fail to achieve the expected high efficiency and sufficient accuracy when reconstructing equilibrium properties. In this paper, we demonstrate that the trajectory mapping (TM) technique has the potential to provide the required slow variables for ES.We illustrate the application of a typical ES algorithm (metadynamics) based on the slow variables constructed from the TM in a hairpin peptide system. In this system, both the equilibrium properties and slow dynamics are accurately obtained within approximately two to three orders of magnitude shorter simulation time than in regular molecular dynamics simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Lindorff-Larsen, S. Piana, R. O. Dror, and D. E. Shaw, Science 334, 517 (2011).

    Article  ADS  Google Scholar 

  2. T. J. Lane, D. Shukla, K. A. Beauchamp, and V. S. Pande, Curr. Opin. Struct. Biol. 23, 58 (2013).

    Article  Google Scholar 

  3. V. Spiwok, Z. Sucur, and P. Hosek, Biotech. Adv. 33, 1130 (2015).

    Article  Google Scholar 

  4. R. C. Bernardi, M. C. R. Melo, and K. Schulten, Biochim. Biophys. Acta (BBA)-General Subj. 1850, 872 (2015).

    Article  Google Scholar 

  5. F. Müller-Plathe, ChemPhysChem 3, 754 (2002).

    Article  Google Scholar 

  6. A. Laio, and M. Parrinello, Proc. Natl. Acad. Sci. 99, 12562 (2002).

    Article  ADS  Google Scholar 

  7. A. F. Voter, Phys. Rev. Lett. 78, 3908 (1997).

    Article  ADS  Google Scholar 

  8. V. Babin, C. Roland, and C. Sagui, J. Chem. Phys. 128, 134101 (2008), arXiv: 0708.0453.

    Article  ADS  Google Scholar 

  9. G. M. Torrie, and J. P. Valleau, J. Comput. Phys. 23, 187 (1977).

    Article  ADS  Google Scholar 

  10. C. Tsallis, and D. A. Stariolo, Phys. A 233, 395 (1996).

    Article  Google Scholar 

  11. Y. Sugita, and Y. Okamoto, Chem. Phys. Lett. 314, 141 (1999).

    Article  ADS  Google Scholar 

  12. H. Fukunishi, O. Watanabe, and S. Takada, J. Chem. Phys. 116, 9058 (2002).

    Article  ADS  Google Scholar 

  13. L. Gong, and X. Zhou, Phys. Rev. E 80, 026707 (2009), arXiv: 0908.3773.

    Article  ADS  Google Scholar 

  14. L. Gong, and X. Zhou, J. Phys. Chem. B 114, 10266 (2010).

    Article  Google Scholar 

  15. S. Xu, X. Zhou, and Z. C. Ou-Yang, Commun. Commut. Phys. 12, 1293 (2012).

    Article  Google Scholar 

  16. L. Gong, X. Zhou, and Z. C. Ou-Yang, PLoS ONE 10, e0125932 (2015).

    Article  Google Scholar 

  17. C. B. Zhang, M. Li, and X. Zhou, Chin. Phys. B 24, 120202 (2015).

    Article  ADS  Google Scholar 

  18. C. Yang, B. Wan, S. Xu, Y. Wang, and X. Zhou, Phys. Rev. E 93, 033309 (2016), arXiv: 1512.08616.

    Article  ADS  Google Scholar 

  19. B. Wan, C. Yang, Y. Wang, and X. Zhou, Phys. Rev. E 93, 043312 (2016), arXiv: 1512.08631.

    Article  ADS  Google Scholar 

  20. C. Zhang, J. Yu, and X. Zhou, J. Phys. Chem. B 121, 4678 (2017).

    Article  Google Scholar 

  21. P. Tiwary, V. Limongelli, M. Salvalaglio, and M. Parrinello, Proc. Natl. Acad. Sci. 112, E386 (2015).

    Article  ADS  Google Scholar 

  22. D. Branduardi, F. L. Gervasio, and M. Parrinello, J. Chem. Phys. 126, 054103 (2007).

    Article  ADS  Google Scholar 

  23. B. M. Dickson, D. E. Makarov, and G. Henkelman, J. Chem. Phys. 131, 074108 (2009).

    Article  ADS  Google Scholar 

  24. L. Sutto, M. D’Abramo, and F. L. Gervasio, J. Chem. Theor. Comput. 6, 3640 (2010).

    Article  Google Scholar 

  25. V. Spiwok, B. Králová, and I. Tvaroška, J Mol Model 14, 995 (2008).

    Article  Google Scholar 

  26. V. Spiwok, P. Oborský, J. Pazúriková, A. Křenek, and B. Králová, J. Chem. Phys. 142, 115101 (2015).

    Article  ADS  Google Scholar 

  27. H. Hotelling, J. Educat. Psychol. 24, 417 (1933).

    Article  Google Scholar 

  28. A. Amadei, A. B. M. Linssen, and H. J. C. Berendsen, Proteins 17, 412 (1993).

    Article  Google Scholar 

  29. F. Sicard, and P. Senet, J. Chem. Phys. 138, 235101 (2013), arXiv: 1211.2744.

    Article  ADS  Google Scholar 

  30. V. Spiwok, and B. Králová, J. Chem. Phys. 135, 224504 (2011).

    Article  ADS  Google Scholar 

  31. F. Nüske, B. G. Keller, G. Pérez-Hernández, A. S. J. S. Mey, and F. Noé, J. Chem. Theor. Comput. 10, 1739 (2014).

    Article  Google Scholar 

  32. Y. Naritomi, and S. Fuchigami, J. Chem. Phys. 134, 065101 (2011).

    Article  ADS  Google Scholar 

  33. O. Valsson, P. Tiwary, and M. Parrinello, Annu. Rev. Phys. Chem. 67, 159 (2016).

    Article  ADS  Google Scholar 

  34. A. Barducci, G. Bussi, and M. Parrinello, Phys. Rev. Lett. 100, 020603 (2008), arXiv: 0803.3861.

    Article  ADS  Google Scholar 

  35. G. A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni, and G. Bussi, Comput. Phys. Commun. 185, 604 (2014), arXiv: 1310.0980.

    Article  ADS  Google Scholar 

  36. V. Babin, C. Roland, T. A. Darden, and C. Sagui, J. Chem. Phys. 125, 204909 (2006).

    Article  ADS  Google Scholar 

  37. The PyMOL Molecular Graphics System, Version 2.0 (Schrödinger, LLC, 2015).

  38. M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and E. Lindahl, SoftwareX 1-2, 19 (2015).

    Article  ADS  Google Scholar 

  39. P. A. Kollman, Acc. Chem. Res. 29, 461 (1996).

    Article  Google Scholar 

  40. G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126, 014101 (2007), arXiv: 0803.4060.

    Article  ADS  Google Scholar 

  41. B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije, J. Comput. Chem. 18, 1463 (1997).

    Article  Google Scholar 

  42. J. L. Alonso, and P. Echenique, J. Comput. Chem. 27, 238 (2006).

    Article  Google Scholar 

  43. E. Darve, D. Rodríguez-Gómez, and A. Pohorille, J. Chem. Phys. 128, 144120 (2008).

    Article  ADS  Google Scholar 

  44. D. Hamelberg, J. Mongan, and J. A. McCammon, J. Chem. Phys. 120, 11919 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Ye, F., Li, M. et al. Enhanced sampling based on slow variables of trajectory mapping. Sci. China Phys. Mech. Astron. 62, 67012 (2019). https://doi.org/10.1007/s11433-018-9313-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9313-1

Keywords

Navigation