Skip to main content
Log in

Simulating a topological transition in a superconducting phase qubit by fast adiabatic trajectories

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The significance of topological phases has been widely recognized in the community of condensed matter physics. The well controllable quantum systems provide an artificial platform to probe and engineer various topological phases. The adiabatic trajectory of a quantum state describes the change of the bulk Bloch eigenstates with the momentum, and this adiabatic simulation method is however practically limited due to quantum dissipation. Here we apply the “shortcut to adiabaticity” (STA) protocol to realize fast adiabatic evolutions in the system of a superconducting phase qubit. The resulting fast adiabatic trajectories illustrate the change of the bulk Bloch eigenstates in the Su-Schrieffer-Heeger (SSH) model. A sharp transition is experimentally determined for the topological invariant of a winding number. Our experiment helps identify the topological Chern number of a two-dimensional toy model, suggesting the applicability of the fast adiabatic simulation method for topological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).

    Article  ADS  Google Scholar 

  2. D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).

    Article  ADS  Google Scholar 

  3. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42, 1698 (1979).

    Article  ADS  Google Scholar 

  4. J. K. Asbóth, L. Oroszlány, and A. Pályi, A Short Course on Topological Insulators: Band Structure and Edge States in One and Two Dimensions (Springer International Publishing, Cham, 2016).

    Book  MATH  Google Scholar 

  5. T. Kitagawa, M. A. Broome, A. Fedrizzi, M. S. Rudner, E. Berg, I. Kassal, A. Aspuru-Guzik, E. Demler, and A. G. White, Nat. Commun. 3, 882 (2012).

    Article  ADS  Google Scholar 

  6. M. Atala, M. Aidelsburger, J. T. Barreiro, D. Abanin, T. Kitagawa, E. Demler, and I. Bloch, Nat. Phys. 9, 795 (2013).

    Article  Google Scholar 

  7. G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, Nature 515, 237 (2014).

    Article  ADS  Google Scholar 

  8. M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimbéne, N. R. Cooper, I. Bloch, and N. Goldman, Nat. Phys. 11, 162 (2014).

    Article  Google Scholar 

  9. L. Duca, T. Li, M. Reitter, I. Bloch, M. Schleier-Smith, and U. Schneider, Science 347, 288 (2015).

    Article  ADS  Google Scholar 

  10. S. Mittal, S. Ganeshan, J. Fan, A. Vaezi, and M. Hafezi, Nat. Photon 10, 180 (2016).

    Article  ADS  Google Scholar 

  11. N. Flaschner, B. S. Rem, M. Tarnowski, D. Vogel, D. S. Luhmann, K. Sengstock, and C. Weitenberg, Science 352, 1091 (2016).

    Article  ADS  Google Scholar 

  12. N. Goldman, J. C. Budich, and P. Zoller, Nat. Phys. 12, 639 (2016).

    Article  Google Scholar 

  13. P. Roushan, C. Neill, Y. Chen, M. Kolodrubetz, C. Quintana, N. Leung, M. Fang, R. Barends, B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Kelly, A. Megrant, J. Mutus, P. J. J. OMalley, D. Sank, A. Vainsencher, J. Wenner, T. White, A. Polkovnikov, A. N. Cleland, and J. M. Martinis, Nature 515, 241 (2014).

    Article  ADS  Google Scholar 

  14. M. D. Schroer, M. H. Kolodrubetz, W. F. Kindel, M. Sandberg, J. Gao, M. R. Vissers, D. P. Pappas, A. Polkovnikov, and K. W. Lehnert, Phys. Rev. Lett. 113, 050402 (2014).

    Article  ADS  Google Scholar 

  15. E. Flurin, V. V. Ramasesh, S. Hacohen-Gourgy, L. S. Martin, N. Y. Yao, and I. Siddiqi, Phys. Rev. X 7, 031023 (2017).

    Google Scholar 

  16. F. Kong, C. Ju, Y. Liu, C. Lei, M. Wang, X. Kong, P. Wang, P. Huang, Z. Li, F. Shi, L. Jiang, and J. Du, Phys. Rev. Lett. 117, 060503 (2016).

    Article  ADS  Google Scholar 

  17. M. Z. Hasan, and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  18. E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, arXiv: quantph/0001106.

  19. M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Canbridge, 2000).

    MATH  Google Scholar 

  20. M. Demirplak, and S. A. Rice, J. Phys. Chem. A 107, 9937 (2003).

    Article  Google Scholar 

  21. M. V. Berry, J. Phys. A-Math. Theor. 42, 365303 (2009).

    Article  Google Scholar 

  22. X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, Phys. Rev. Lett. 105, 123003 (2010).

    Article  ADS  Google Scholar 

  23. S. Masuda, and K. Nakamura, Proc. R. Soc. A-Math. Phys. Eng. Sci. 466, 1135 (2010).

    Article  ADS  Google Scholar 

  24. E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, Adv. Atomic Mol. Opt. Phys. 62 117 (2013).

    Article  ADS  Google Scholar 

  25. B. T. Torosov, S. Guérin, and N. V. Vitanov, Phys. Rev. Lett. 106, 233001 (2011).

    Article  ADS  Google Scholar 

  26. J. M. Martinis, and M. R. Geller, Phys. Rev. A 90, 022307 (2014).

    Article  ADS  Google Scholar 

  27. M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo, D. Ciampini, R. Fazio, V. Giovannetti, R. Mannella, and O. Morsch, Nat. Phys. 8, 147 (2011).

    Article  Google Scholar 

  28. J. Zhang, J. H. Shim, I. Niemeyer, T. Taniguchi, T. Teraji, H. Abe, S. Onoda, T. Yamamoto, T. Ohshima, J. Isoya, and D. Suter, Phys. Rev. Lett. 110, 240501 (2013).

    Article  ADS  Google Scholar 

  29. B. B. Zhou, A. Baksic, H. Ribeiro, C. G. Yale, F. J. Heremans, P. C. Jerger, A. Auer, G. Burkard, A. A. Clerk, and D. D. Awschalom, Nat. Phys 13, 330 (2017).

    Article  Google Scholar 

  30. S. An, D. Lv, A. del Campo, and K. Kim, Nat. Commun. 7, 12999 (2016).

    Article  ADS  Google Scholar 

  31. Z. Zhang, T. Wang, L. Xiang, J. Yao, J. Wu, and Y. Yin, Phys. Rev. A 95, 042345 (2017).

    Article  ADS  Google Scholar 

  32. F. Motzoi, J. M. Gambetta, P. Rebentrost, and F. K. Wilhelm, Phys. Rev. Lett. 103, 110501 (2009).

    Article  ADS  Google Scholar 

  33. J. M. Gambetta, F. Motzoi, S. T. Merkel, and F. K. Wilhelm, Phys. Rev. A 83, 012308 (2011).

    Article  ADS  Google Scholar 

  34. E. Lucero, J. Kelly, R. C. Bialczak, M. Lenander, M. Mariantoni, M. Neeley, A. D. OConnell, D. Sank, H. Wang, M. Weides, J. Wenner, T. Yamamoto, A. N. Cleland, and J. M. Martinis, Phys. Rev. A 82, 042339 (2010).

    Article  ADS  Google Scholar 

  35. T. Lu, Phys. Rev. A 84, 033411 (2011).

    Article  ADS  Google Scholar 

  36. J. M. Martinis, Quantum Inf. Process. 8, 81 (2009).

    Article  Google Scholar 

  37. E. Lucero, R. Barends, Y. Chen, J. Kelly, M. Mariantoni, A. Megrant, P. OMalley, D. Sank, A. Vainsencher, J. Wenner, T. White, Y. Yin, A. N. Cleland, and J. M. Martinis, Nat. Phys. 8, 719 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianlan Wu or Yi Yin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zhang, Z., Xiang, L. et al. Simulating a topological transition in a superconducting phase qubit by fast adiabatic trajectories. Sci. China Phys. Mech. Astron. 61, 047411 (2018). https://doi.org/10.1007/s11433-017-9156-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9156-1

Keywords

Navigation