Skip to main content
Log in

Spin-orbit coupling and spin current in mesoscopic devices

  • Review
  • Progress of Projects Supported by NSFC · Spintronics
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Recently, the spin-orbit coupling and spin current in nanodevice have been investigated extensively. In this paper, we review the recent progresses in this field. We introduce the real space Hamiltonian and the second quantization Hamiltonian of a typical quantum transport mesoscopic device, metal-QD-metal configuration, containing the spin-orbit interaction, e-e interactions, and magnetic field. Some noteworthy effects (e.g., the spin-polarized current, spin accumulation, persistent spin current) originated from the spin-orbit interaction are reviewed, and the electric field induced by spin-current is mentioned. Lastly, we introduce some unsolved problems and prospects in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolf S A, Awschalom D D, Buhrman R A, et al. Spintronics: A spinbased electronics vision for the future. Science, 2001, 294: 1488–1495

    Article  ADS  Google Scholar 

  2. Zutic I, Fabian J, Das Sarma S. Spintronics: Fundamentals and applications. Rev Mod Phys, 2004, 76: 323–410

    Article  ADS  Google Scholar 

  3. Schmidt G, Ferrand D, Molenkamp L W, et al. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys Rev B, 2000, 62: R4790–R4793

    Article  ADS  Google Scholar 

  4. van Son P C, van Kempen H, Wyder P. Boundary resistance of the ferromagnetic-nonferromagnetic metal interface. Phys Rev Lett, 1987, 58: 2271–2273

    Article  ADS  Google Scholar 

  5. Prinz G A. Magnetoelectronics. Science, 1998, 282: 1660–1663

    Article  Google Scholar 

  6. Koga T, Nitta J, Akazaki T, et al. Rashba spin-orbit coupling probed by the weak antilocalization analysis in InAlAs/InGaAs/InAlAs quantum wells as a function of quantum well asymmetry. Phys Rev Lett, 2002, 89: 046801

    Article  ADS  Google Scholar 

  7. Matsuyama T, Kursten R, Meibner C, et al. Rashba spin splitting in inversion layers on p-type bulk InAs. Phys Rev B, 2000, 61: 15588–15591

    Article  ADS  Google Scholar 

  8. Nitta J, Akazaki T, Takayanagi H, et al. Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys Rev Lett, 1997, 78: 1335–1338

    Article  ADS  Google Scholar 

  9. Bergsten T, Kobayashi T, Sekine Y, et al. Experimental demonstration of the time reversal aharonov-casher effect. Phys Rev Lett, 2006, 97: 196803

    Article  ADS  Google Scholar 

  10. Koga T, Sekine Y, Nitta J. Experimental realization of a ballistic spin interferometer based on the rashba effect using a nanolithographically defined square loop array. Phys Rev B, 2006, 74: R041302

    Article  ADS  Google Scholar 

  11. Lin Y, Koga T, Nitta J. Effect of an InP/In0.53Ga0.47As interface on spin-orbit interaction in In0.52Al0.48As/In0.53Ga0.47As heterostructures. Phys Rev B, 2005, 71: 045328

    Article  ADS  Google Scholar 

  12. Grundler D. Large rashba splitting in InAs quantum wells due to electron wave function penetration into the barrier layers. Phys Rev Lett, 2000, 84: 6074–6077

    Article  ADS  Google Scholar 

  13. Giglberger S, Golub L E, Belkov V V, et al. Rashba and Dresselhaus spin splittings in semiconductor quantum wells measured by spin photocurrents. Phys Rev B, 2007, 75: 035327

    Article  ADS  Google Scholar 

  14. Bychkov Y A, Rashba E I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J Phys C, 1984, 17: 6039–6046

    Article  ADS  Google Scholar 

  15. Kato Y K, Myers R C, Gossard A C, et al. Observation of the spin hall effect in semiconductors. Science, 2004, 306: 1910–1913

    Article  ADS  Google Scholar 

  16. Wunderlich J, Kastner B, Sinova J, et al. Experimental observation of the spin-hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys Rev Lett, 2005, 94: 047204

    Article  ADS  Google Scholar 

  17. Culcer D, Sinova J, Sinitsyn N A, et al. Semiclassical spin transport in spin-orbit-coupled bands. Phys Rev Lett, 2004, 93: 046602

    Article  ADS  Google Scholar 

  18. Datta S, Das B. Electronic analog of the electro-optic modulator. Appl Phys Lett, 1990, 56: 665–667

    Article  ADS  Google Scholar 

  19. Murakami S, Nagaosa N, Zhang S C. Dissipationless quantum spin current at room temperature. Science, 2003, 301: 1348–1351

    Article  ADS  Google Scholar 

  20. Sinova J, Culcer D, Niu Q, et al. Universal intrinsic spin hall effect. Phys Rev Lett, 2004, 92: 126603

    Article  ADS  Google Scholar 

  21. Ren W, Qiao Z, Wang J, et al. Universal spin-Hall conductance fluctuations in two dimensions. Phys Rev Lett, 2006, 97: 066603

    Article  ADS  Google Scholar 

  22. Cheng S G, Xing Y, Sun Q F, et al. Spin Nernst effect and Nernst effect in two-dimensional electron systems. Phys Rev B, 2008, 78: 045302

    Article  ADS  Google Scholar 

  23. Hirsch J E. Spin hall effect. Phys Rev Lett, 1999, 83: 1834–1837

    Article  ADS  Google Scholar 

  24. Eashba E I, Efros AI L. Orbital mechanisms of electron-spin manipulation by an electric field. Phys Rev Lett, 2003, 91: 126405

    Article  ADS  Google Scholar 

  25. Rokhinson L P, Larkina V, Lyanda-Geller Y B, et al. Spin separation in cyclotron motion. Phys Rev Lett, 2004, 93: 146601

    Article  ADS  Google Scholar 

  26. Hu L, Gao J, Shen S Q. Influence of spin transfer and contact resistance on measurement of the spin hall effect. Phys Rev B, 2003, 68: 115302

    Article  ADS  Google Scholar 

  27. Ionicioiu R, D’Amico I. Mesoscopic stern-gerlach device to polarize spin currents. Phys Rev B, 2003, 67: R041307

    Article  ADS  Google Scholar 

  28. Frustaglia D, Richter K. Spin interference effects in ring conductors subject to Rashba coupling. Phys Rev B, 2004, 69: 235310

    Article  ADS  Google Scholar 

  29. Frustaglia D, Hentschel M, Richter K. Quantum transport in nonuniform magnetic fields: Aharonov-Bohm ring as a spin switch. Phys Rev Lett, 2001, 87: 256602

    Article  ADS  Google Scholar 

  30. Sun Q F, Xie X C. Spontaneous spin-polarized current in a nonuniform rashba interaction system. Phys Rev B, 2005, 71: 155321

    Article  ADS  Google Scholar 

  31. Sun Q F, Xie X C. Bias-controllable intrinsic spin polarization in a quantum dot: Proposed scheme based on spin-orbit interaction. Phys Rev B, 2006, 73: 235301

    Article  MathSciNet  ADS  Google Scholar 

  32. Voskoboynikov A, Liu S S, Lee C P. Spin-dependent tunneling in double-barrier semiconductor heterostructures. Phys Rev B, 1999, 59: 12514–12520

    Article  ADS  Google Scholar 

  33. Koga T, Nitta J, Takayanagi H, et al. Spin-filter device based on the rashba effect using a nonmagnetic resonant tunneling diode. Phys Rev Lett, 2002, 88: 126601

    Article  ADS  Google Scholar 

  34. Usaj G, Balseiro C A. Spin accumulation and equilibrium currents at the edge of 2DEGs with spin-orbit coupling. Europhys Lett, 2005, 72: 631–637

    Article  ADS  Google Scholar 

  35. Shen S Q, Ma M, Xie X C, et al. Resonant spin hall conductance in two-dimensional electron systems with a Rashba interaction in a perpendicular magnetic field. Phys Rev Lett, 2004, 92: 256603

    Article  ADS  Google Scholar 

  36. Shen S Q, Bao Y J, Ma M, et al. Resonant spin hall conductance in quantum hall systems lacking bulk and structural inversion symmetry. Phys Rev B, 2005, 71: 155316

    Article  ADS  Google Scholar 

  37. Yao Y, Fang Z. Sign changes of Intrinsic spin hall effect in semiconductors and simple metals: First-principles calculations. Phys Rev Lett, 2005, 95: 156601

    Article  ADS  Google Scholar 

  38. Jiang Z F, Li R D, Zhang S C, et al. Semiclassical time evolution of the holes from luttinger hamiltonian. Phys Rev B, 2005, 72: 045201

    Article  ADS  Google Scholar 

  39. Li J, Hu L, Shen S Q. Spin-resolved hall effect driven by spin-orbit coupling. Phys Rev B, 2005, 71: R241305

    Article  ADS  Google Scholar 

  40. Kou S P, Qi X L, Weng Z Y. Spin hall effect in a doped mott insulator. Phys Rev B, 2005, 72: 165114

    Article  ADS  Google Scholar 

  41. Wang J, Chan K S, Xing D Y. Intrinsic oscillation of spin accumulation induced by Rashba spin-orbital interaction. Phys Rev B, 2006, 73: 033316

    Article  ADS  Google Scholar 

  42. Dai X, Fang Z, Yao Y G, et al. Resonant intrinsic spin hall effect in p-type GaAs quantum well structure. Phys Rev Lett, 2006, 96: 086802

    Article  ADS  Google Scholar 

  43. Sheng L, Sheng D N, Ting C S. Spin-hall effect in two-dimensional electron systems with Rashba spin-orbit coupling and disorder. Phys Rev Lett, 2005, 94: 016602

    Article  ADS  Google Scholar 

  44. Sheng L, Sheng D N, Ting C S, et al. Nondissipative spin hall effect via quantized edge transport. Phys Rev Lett, 2005, 95: 136602

    Article  ADS  Google Scholar 

  45. Xing Y, Sun Q F, Wang J. Nature of spin hall effect in a finite ballistic two-dimensional system with Rashba and Dresselhaus spin-orbit interaction. Phys Rev B, 2006, 73: 205339

    Article  ADS  Google Scholar 

  46. Xing Y, Sun Q F, Tang L, et al. Accumulation of opposite spins on the transverse edges of a two-dimensional electron gas in a longitudinal electric field. Phys Rev B, 2006, 74: 155313

    Article  ADS  Google Scholar 

  47. Jiang Y J, Hu L B. Kinetic magnetoelectric effect in a two-dimensional semiconductor strip due to boundary-confinement-induced spin-orbit coupling. Phys Rev B, 2006, 74: 075302

    Article  ADS  Google Scholar 

  48. Yao J, Yang Z Q. Spin accumulation in a ballistic rashba bar. Phys Rev B, 2006, 73: 033314

    Article  ADS  Google Scholar 

  49. Nikolic B K, Souma S, Zarbo L P, et al. Nonequilibrium spin hall accumulation in ballistic semiconductor nanostructures. Phys Rev Lett, 2005, 95: 046601

    Article  ADS  Google Scholar 

  50. Xing Y, Sun Q F, Wang J. Symmetry and transport property of spin current induced spin-Hall effect. Phys Rev B, 2007, 75: 075324

    Article  ADS  Google Scholar 

  51. Sih V, Myers R C, Kato Y K, et al. Spatial imaging of the spin hall effect and current-induced polarization in two-dimensional electron gases. Nat Phys, 2005, 1: 31–35

    Article  Google Scholar 

  52. Sih V, Lau W H, Myers R C, et al. Generating spin currents in semiconductors with the spin hall effect. Phys Rev Lett, 2006, 97: 096605

    Article  ADS  Google Scholar 

  53. Valenzuela S O, Tinkham M. Direct electronic measurement of the spin hall effect. Nature, 2006, 442: 176–179

    Article  ADS  Google Scholar 

  54. Xing Y, Sun Q F, Wang J. Influence of dephasing on the quantum Hall effect and the spin Hall effect. Phys Rev B, 2008, 77: 115346

    Article  ADS  Google Scholar 

  55. Mireles F, Kirczenow G. Ballistic spin-polarized transport and rashba spin precession in semiconductor nanowires. Phys Rev B, 2001, 64: 024426

    Article  ADS  Google Scholar 

  56. Cahay M, Bandyopadhyay S. Conductance modulation of spin interferometers. Phys Rev B, 2003, 68: 115316

    Article  ADS  Google Scholar 

  57. Larsen M, Lunde A M, Flensberg K. Conductance of Rashba spin-split systems with ferromagnetic contacts. Phys Rev B, 2002, 66: 033304

    Article  ADS  Google Scholar 

  58. Wang X F, Vasilopoulos P. Magnetotransport in a two-dimensional electron gas in the presence of spin-orbit interaction. Phys Rev B, 2003, 67: 085313

    Article  ADS  Google Scholar 

  59. Wang J, Sun H B, Xing D Y. Rashba spin precession in a magnetic field. Phys Rev B, 2004, 69: 085304

    Article  ADS  Google Scholar 

  60. Jorgen R. Quantum Transport Theory. Boulder: the Perseus Books Group, 1998

    Google Scholar 

  61. Gerald D M. Many-Particle Physics. New York: Plenum Press, 1981

    Google Scholar 

  62. Chou K C, Su Z B, Hao B L, et al. Equilibrium and nonequilibrium formalisms made unified. Phys Rep, 1985, 118: 1–131

    Article  MathSciNet  ADS  Google Scholar 

  63. Meir Y, Wingreen N S. Landauer formula for the current through an interacting electron region. Phys Rev Lett, 1992, 68: 2512–2515

    Article  ADS  Google Scholar 

  64. Jauho A P, Wingreen N S, Meir Y. Time-dependent transport in interacting and noninteracting resonant-tunneling systems. Phys Rev B, 1994, 50: 5528–5544

    Article  ADS  Google Scholar 

  65. Sun Q F, Wang B G, Wang J, et al. Electron transport through a mesoscopic hybrid multiterminal resonant-tunneling system. Phys Rev B, 2000, 61: 4754–4761

    Article  ADS  Google Scholar 

  66. Sun Q F, Xie X C. Quantum transport through a graphene nanoribbon C superconductor junction. J Phys-Condens Matter, 2009, 21: 344204

    Article  Google Scholar 

  67. Sun Q F, Wang J, Guo H. Quantum transport theory for nanostructures with rashba spin-orbital interaction. Phys Rev B, 2005, 71: 165310

    Article  ADS  Google Scholar 

  68. Vernek E, Sandler N, Ulloa S E. Kondo screening suppression by spinorbit interaction in quantum dots. Phys Rev B, 2009, 80: 041302

    Article  ADS  Google Scholar 

  69. Lu H F, Guo Y. Kondo effect and spin-polarized transport through a quantum dot with Rashba spin-orbit interaction. Phys Rev B, 2007, 76: 045120

    Article  ADS  Google Scholar 

  70. Ye C Z, Nie Y H, Liang J Q. A pure spin-current injector of semiconductor quantum dots with Andreev reflection and Rashba spin-orbit coupling. Chin Phys B, 2011, 20: 127202

    Article  ADS  Google Scholar 

  71. Pan H, Cui Y, Wang H. Spin-polarized Andreev reflection and spin accumulation in a quantum-dot Aharonov-Bohm interferometer with spin-orbit interaction effects. J Appl Phys, 2011, 110: 033706

    Article  Google Scholar 

  72. Sun Q F, Guo H, Wang J. A spin cell for spin current. Phys Rev Lett, 2003, 90: 258301

    Article  ADS  Google Scholar 

  73. Long W, Sun Q F, Guo H, et al. Gate-controllable spin battery. Appl Phys Lett, 2003, 83: 1397–1399

    Article  ADS  Google Scholar 

  74. Wang D K, Sun Q F, Guo H. Spin-battery and spin-current transport through a quantum dot. Phys Rev B, 2004, 69: 205312

    Article  ADS  Google Scholar 

  75. Chi F, Zheng J, Sun L L. Spin-polarized current and spin accumulation in a three-terminal two quantum dots ring. Appl Phys Lett, 2008, 92: 172104

    Article  ADS  Google Scholar 

  76. Chi F, Zheng J. Spin separation via a three-terminal Aharonov-Bohm interferometers. Appl Phys Lett, 2006, 92: 062106

    Article  ADS  Google Scholar 

  77. Liang F, Yang Y H, Wang, J, et al. Detection of spin bias by quantum interference effect in a Rashba ring. Europhys Lett, 2009, 87: 47004

    Article  ADS  Google Scholar 

  78. Sun Q F, Xing Y, Shen S Q. Double quantum dot as detector of spin bias. Phys Rev B, 2008, 77: 195313

    Article  ADS  Google Scholar 

  79. Xing Y, Sun Q F, Wang J. Spin bias measurement based on a quantum point contact. Appl Phys Lett, 2008, 93: 142107

    Article  ADS  Google Scholar 

  80. Chi F, Sun Q F. Electrical preparation and readout of a single spin state in a quantum dot via spin bias. Phys Rev B, 2010, 81: 075310

    Article  ADS  Google Scholar 

  81. Frolov S M, Luscher S, Yu W, et al. Ballistic spin resonance. Nature, 2009, 458: 868–871

    Article  ADS  Google Scholar 

  82. Frolov S M, Venkatesan A, Yu W, et al. Electrical generation of pure spin currents in a two-dimensional electron gas. Phys Rev Lett, 2009, 102: 116802

    Article  ADS  Google Scholar 

  83. Ramaglia VM, Bercioux D, Cataudella V, et al. Conductance of a large point contact with Rashba effect. Eur Phys J B, 2003, 36: 365–373

    Article  ADS  Google Scholar 

  84. Kiselev A A, Kim K W. T-shaped spin filter with a ring resonator. J Appl Phys, 2003, 94: 4001–4005

    Article  ADS  Google Scholar 

  85. Ji Y, Chung Y, Sprinzak D, et al. An electronic Mach-Zehnder interferometer. Nature, 2003, 422: 415–418

    Article  ADS  Google Scholar 

  86. Ohe J I, Yamamoto M, Ohtsuki T, et al. Mesoscopic Stern-Gerlach spin filter by nonuniform spin-orbit interaction. Phys Rev B, 2005, 72: 041308

    Article  ADS  Google Scholar 

  87. Shankar R. Principles of Quantum Mechanics. New York: Plenum Press, 1980. 177

  88. Schult R L, Ravenhall D G, Wyld H W. Quantum bound states in a classically unbound system of crossed wires. Phys Rev B, 1989, 39: 5476–5479

    Article  ADS  Google Scholar 

  89. Wang J, Guo H, Harris R. Electron waveguide coupler: A four-terminal device. Appl Phys Lett, 1991, 59: 3075–3077

    Article  ADS  Google Scholar 

  90. Sun Q F, Yang P, Guo H. Four-terminal thermal conductance of mesoscopic dielectric systems. Phys Rev Lett, 2002, 89: 175901

    Article  ADS  Google Scholar 

  91. Büttiker M. Four-terminal phase-coherent conductance. Phys Rev Lett, 1986, 57: 1761–1764

    Article  ADS  Google Scholar 

  92. Hackenbroich G. Phase coherent transmission through interacting mesoscopic systems. Phys Rep, 2001, 343: 463–538

    Article  ADS  MATH  Google Scholar 

  93. Awschalom D D, Loss D, Samarth N. Semiconductor Spintronics and Quantum Computation. Berlin: Springer-Verlag, 2002. Chapter 8

    Google Scholar 

  94. Cronenwett S M, Oosterkamp T H, Kouwenhoven L P. A tunable kondo effect in quantum dots. Science, 1998, 281: 540–544

    Article  ADS  Google Scholar 

  95. Büttiker M, Imry Y, Landauer R. Josephson behavior in small normal one-dimensional rings. Phys Lett A, 1983, 96: 365–367

    Article  ADS  Google Scholar 

  96. Cheung H F, Gefen Y, Riedel E K, et al. Persistent currents in small one-dimensional metal rings. Phys Rev B, 1988, 37: 6050–6062

    Article  ADS  Google Scholar 

  97. Lévy L P, Dolan G, Dunsmuir J, et al. Magnetization of mesoscopic copper rings: Evidence for persistent currents. Phys Rev Lett, 1990, 64: 2074–2077

    Article  ADS  Google Scholar 

  98. Chandrasekhar V, Webb R A, Brady M J, et al. Magnetic response of a single, isolated gold loop. Phys Rev Lett, 1991, 67: 3578–3581

    Article  ADS  Google Scholar 

  99. Mailly D, Chapelier C, Benoit A. Experimental observation of persistent currents in GaAs-AlGaAs single loop. Phys Rev Lett, 1993, 70: 2020–2023

    Article  ADS  Google Scholar 

  100. Loss D, Goldbart P, Balatsky A V. Berry’s phase and persistent charge and spin currents in textured mesoscopic rings. Phys Rev Lett, 1990, 65: 1655–1658

    Article  ADS  Google Scholar 

  101. Splettstoesser J, Governale M, Zülicke U. Persistent current in ballistic mesoscopic rings with rashba spin-orbit coupling. Phys Rev B, 2003, 68: 165341

    Article  ADS  Google Scholar 

  102. Sun Q F, Xie X C, Wang J. Persistent spin current in a mesoscopic hybrid ring with spin-orbit coupling. Phys Rev Lett, 2007, 98: 196801

    Article  ADS  Google Scholar 

  103. Sun Q F, Xie X C, Wang J. Persistent spin current in nanodevices and definition of the spin current. Phys Rev B, 2008, 77: 035327

    Article  ADS  Google Scholar 

  104. Sonin E B. Proposal for measuring mechanically equilibrium spin currents in the Rashba medium. Phys Rev Lett, 2007, 99: 266602

    Article  ADS  Google Scholar 

  105. Sonin E B. Equilibrium spin currents in the Rashba medium. Phys Rev B, 2007, 76: 033306

    Article  ADS  Google Scholar 

  106. Sun Q F, Guo H, Wang J. Spin-current-induced electric field. Phys Rev B, 2004, 69: 054409

    Article  ADS  Google Scholar 

  107. Sun Q F, Xie X C. Definition of the spin current: The angular spin current and its physical consequences. Phys Rev B, 2005, 72: 245305

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QingFeng Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, Y., Sun, Q. Spin-orbit coupling and spin current in mesoscopic devices. Sci. China Phys. Mech. Astron. 56, 196–206 (2013). https://doi.org/10.1007/s11433-012-4957-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4957-5

Keywords

Navigation