Skip to main content
Log in

Correlation between liquid structure and glass forming ability in glassy Ag-based binary alloys

  • Research Paper
  • Special Topic on Bulk Metallic Glasses
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The atomic structures of liquid Ag-based binary alloys have been investigated in the solidification process by means of X-ray diffraction. The results of liquid structure show that there is a break point in the mean nearest neighbor distance r 1 and the coordination number N min for glass-forming liquid, while the correlation radius r c and the coordination number N min display a monotone variational trend above the break point. It means glass-forming liquids have a steady changing in structure above liquidus and more inhomogeneous state at liquidus. We conclude that there is a strong correlation between liquid structure and glass forming ability in Ag-based binary alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaban I, Hoyer W, Il’inskii A, et al. Temperature-dependent structural changes in liquid Ge15Te85. J Non-Cryst Solids, 2007, 353: 1808–1812

    Article  ADS  Google Scholar 

  2. Kakinuma F, Fukunaga T, Suzuki K. Neutron diffraction study of liquid SiXTe100-X (X ≤ 20) alloys. J Non-Cryst Solids, 2002, 312–314: 380–383

    Article  Google Scholar 

  3. Qiu D, Moss R M, Pickup D M, et al. An X-ray absorption spectroscopy study of the local environment of iron in degradable iron-phosphate glasses. J Non-Cryst Solids, 2008, 354: 5542–5546

    Article  ADS  Google Scholar 

  4. Hui X, Fang H Z, Chen G L, et al. Icosahedral ordering in Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass. Appl Phys Lett, 2008, 92: 201913-1–201913-13

    Article  ADS  Google Scholar 

  5. Mattern N, Sakowski J, Kühn U, et al. Structural behavior and glass transition of bulk metallic glasses. J Non-Cryst Solids, 2004, 345-346: 758–761

    Article  ADS  Google Scholar 

  6. Fujii H, Takeda S, Kato Y, et al. Structural properties of liquid Au-Si and Au-Ge alloys with deep eutectic region. J Non-Cryst Solids, 2007, 353: 2094–2098

    Article  ADS  Google Scholar 

  7. Matter N. Structure formation in liquid and amorphous metallic alloys. J Non-Cryst Solids, 2007, 353: 1723–1731

    Article  ADS  Google Scholar 

  8. Takeda S, Fujii H, Kawakita Y, et al. Structure of eutectic alloys of Au with Si and Ge. J Alloys Compd, 2008, 452: 149–153

    Article  Google Scholar 

  9. Takeda S, Fujii H, Kawakita Y, et al. Structure of liquid Au-Si alloys around the eutectic region. Mater Sci Eng A, 2007, 449-451: 590–593

    Article  Google Scholar 

  10. Mattern N, Kühn U, Eckert J. Structure behavior of amorphous and lqiuid metallic alloys at elevated temperatures. J Non-Cryst Solids, 2007, 353: 3327–3331

    Article  ADS  Google Scholar 

  11. Duwez P, Willens R H, Klement W. Metastable electron compound in Ag-Ge alloys. J Appl Phys, 1960, 31: 1137

    Article  ADS  Google Scholar 

  12. Lazarev N P, Bakai A S, Abromeit C. Molecular dynamics simulation of viscosity in supercooled liquid and glassy AgCu alloy. J Non-Cryst Solids, 2007, 353: 3332–3337

    Article  ADS  Google Scholar 

  13. Van V N, Fisson S, Theye M L. Optical and electrical investigations of amorphous Ag-Ge metallic alloy films. Thin Solid Films, 1982, 89: 315–321

    Article  Google Scholar 

  14. Moe J K. A method for converting experimental X-ray intensities to an absolute scale. Acta Crystallogr, 1956, 9: 951–953

    Article  Google Scholar 

  15. Norman N. The Fourier transform method for normalizing intensities. Acta Crystallogr, 1957, 10: 370–373

    Article  MathSciNet  Google Scholar 

  16. Waseda Y. The Structure of Non-Crystalline Materials. New York: McGraw-Hill, 1980. 9–17

    Google Scholar 

  17. Cromer D T, Mann J B. Compton scattering factors for spherically symmetric free atoms. J Chem Phys, 1967, 47: 1892–1983

    Article  ADS  Google Scholar 

  18. Enderby J E. Neutron diffraction, isotopic substitution and the structure of aqueous solutions. Philos Trans R Soc London Ser B, 1980, 290: 553–566

    Article  ADS  Google Scholar 

  19. Barnes A C, Hamilton M A, Buchanan P, et al. Combined X-ray and neutron diffraction from binary liquids and amorphous semiconductors. J Non-Cryst Solids, 1999, 250–252: 393–404

    Article  Google Scholar 

  20. Warren W W. Summary-experiment. J Non-Cryst Solids, 1996, 205–207: 930–933

    Article  Google Scholar 

  21. Xue X Y, Bian X F, Geng X B, et al. Structural evolution of medium range and short-range order with temperature in Cu-25wt.% Sn. Mater Sci Eng A, 2003, 363: 134–139

    Article  Google Scholar 

  22. Iida T, Guthrie R I L. The Physical Properties of Liquid Metals. Oxford: Clarendon Press, 1993. 20–21

    Google Scholar 

  23. Zhao Y, Bian X F, Qin J Y, et al. X-ray diffraction experiments on the solidification process of Cu80Ag20 alloy. Phys Lett A, 2006, 357: 479–484

    Article  MATH  ADS  Google Scholar 

  24. Zhao Y, Bian X F, Qin X B, et al. X-ray diffraction experiments on In30Sn70 from normal liquid to solidus. Phys Lett A, 2006, 356: 385–391

    Article  ADS  Google Scholar 

  25. Li H, Pederiva F, Wang G H, et al. Local clusters and defects in one-dimensional gold wires. J Chem Phys, 2003, 119: 9771–9776

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiuFang Bian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lü, X., Bian, X., Xiang, N. et al. Correlation between liquid structure and glass forming ability in glassy Ag-based binary alloys. Sci. China Phys. Mech. Astron. 53, 399–404 (2010). https://doi.org/10.1007/s11433-010-0137-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-0137-7

Keywords

Navigation