Skip to main content
Log in

Electronic properties of multi-defected zigzag carbon nanotubes

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Electronic properties of multi-defected zigzag single-walled carbon nanotubes are investigated by use of the tight-binding Green’s function method. The Stone-Wales defects and the vacancies are considered. We find that the conductance sensitively depends on the realistic defect configurations for the metallic zigzag carbon nanotubes. Interestingly, the electronic transport properties of the nanotubes with three vacancies can be considered as the sum effect of two double-vacancies, while those with Stone-Wales defects can not. The electron interference along the longitudinal axis and the transport blocking are observed, which may be useful for understanding the electron transport behavior of carbon nanotube in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature, 1996, 381: 678–680

    Article  ADS  Google Scholar 

  2. Ebbesen T W, Lezec H J, Hiura H, et al. Electrical conductivity of individual carbon nanotubes. Nature, 1996, 382: 54–56

    Article  ADS  Google Scholar 

  3. Dunlap B I. Connecting carbon tubules. Phys Rev B, 1992, 46: 1933–1936

    Article  ADS  Google Scholar 

  4. Banhart F. Irradiation effects in carbon nanostructures. Rep Prog Phys, 1999, 62: 1181–1221

    Article  ADS  Google Scholar 

  5. Choi H J, Ihm J, Louie S G, et al. Defects, quasibound states, and quantum conductance in metallic carbon nanotubes. Phys Rev Lett, 2000, 84: 2917–2920

    Article  ADS  Google Scholar 

  6. Suenaga K, Wakabayashi H, Koshino M, et al. Imaging active topological defects in carbon nanotubes. Nature, 2007, 2: 358–360

    Google Scholar 

  7. Alexandre S S, Mazzoni M S C, Chacham H. Edge states and magnetism in carbon nanotubes with line defects. Phys Rev Lett, 2008, 100: 146801

    Article  ADS  Google Scholar 

  8. Qian D, Wagner G J, Liu W K, et al. Mechanics of carbon nanotubes. Appl Mech Rev, 2002, 55: 495–533

    Article  Google Scholar 

  9. Srivastava D, Menon M, Cho K. Computational nanotechnology with carbon nanotubes and fullerenes. Comput Sci Eng, 2001, 3: 42–55

    Article  Google Scholar 

  10. Wang C C, Zhou G, Wu J, et al. Effects of vacancy-carboxyl pair functionalization on electronic properties of carbon nanotubes. Appl Phys Lett, 2006, 89: 173130

    Article  ADS  Google Scholar 

  11. Wang C C, Zhou G, Liu H T, et al. Chemical functionalization of carbon nanotubes by carboxyl groups on Stone-Wales defects: A density functional theory study. J Phys Chem B, 2006, 110: 10266–10271

    Article  Google Scholar 

  12. Park J Y. Electrically tunable defects in metallic single-walled carbon nanotubes. Appl Phys Lett, 2007, 90: 023112

    Article  ADS  Google Scholar 

  13. Kang Y J, Kim Y H, Chang K J. Electrical transport properties of nanoscale devices based on carbon nanotubes. Curr Appl Phys, 2009, 9: S7–S11

    Article  ADS  Google Scholar 

  14. Zhou J Z, Wang C Y. First-principles study of the effects of Si doping on geometric and electronic structure of closed carbon nanotube. Chinese Sci Bull, 2005, 50: 1823–1828

    Article  Google Scholar 

  15. Yang B H, Wang Y, Huang Y H. Theoretical studies of C36 encapsulated in zigzag single-wall carbon nanotubes. Chinese Sci Bull, 2006, 51: 25–30

    Article  Google Scholar 

  16. Stone A J, Wales D J. Theoretical studies of icosahedral C60 and some related species. Chem Phys Lett, 1986, 128: 501–503

    Article  ADS  Google Scholar 

  17. Monthioux M. Filling single-wall carbon nanotubes. Carbon, 2002, 40: 1809–1823

    Article  Google Scholar 

  18. Zhou T, Wu J, Duan W H, et al. Physical mechanism of transport blocking in metallic zigzag carbon nanotubes. Phys Rev B, 2007, 75: 205410

    Article  ADS  Google Scholar 

  19. Gómez-Navarro C, De Pablo P J, Gómez-Herrero J, et al. Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime. Nat Mat, 2005, 4: 534–539

    Article  Google Scholar 

  20. Tunvir K, Kim A, Nahm S H. The effect of two neighboring defects on the mechanical properties of carbon nanotubes. Nanotechnology, 2008, 19: 065703

    Article  ADS  Google Scholar 

  21. Barinov A, Üstünel H, Fabris S, et al. Defect-controlled transport properties of metallic atoms along carbon nanotube surfaces. Phys Rev Lett, 2007, 99: 046803

    Article  ADS  Google Scholar 

  22. Kim S J, Park Y J, Ra E J, et al. Defect-induced loading of Pt nanoparticles on carbon nanotubes. Appl Phys Lett, 2007, 90: 023114

    Article  ADS  Google Scholar 

  23. Ouyang M, Huang J L, Cheung C L, et al. Atomically resolved single-walled carbon nanotube intramolecular junctions atomically resolved single-walled carbon nanotube intramolecular junctions. Science, 2001, 291: 97–100

    Article  ADS  Google Scholar 

  24. Nardelli M B, Yakobson B I, Bernholc J. Brittle and ductile behavior in carbon nanotubes. Phys Rev Lett, 1998, 81: 4656–4659

    Article  ADS  Google Scholar 

  25. Zhou T, Yang L, Wu J, et al. Long-range interaction between Stone-wales defects in zigzag single-Walled carbon nanotubes. Phys Rev B, 2005, 72: 193407

    Article  ADS  Google Scholar 

  26. Charlier J C, Lambin P, Ebbesen T W. Electronic properties of carbon nanotubes with polygonized cross sections. Phys Rev B, 1996, 54: R8377–R8380

    Article  ADS  Google Scholar 

  27. Datta S. Electronic Transport in Mesoscopic Systems. Cambridge: Cambridge University Press, 1995

    Google Scholar 

  28. Wu J, Gu B L, Chen H, et al. Resonant tunneling in an Aharonov-Bohm ring with a quantum dot. Phys Rev Lett, 1998, 80: 1952–1955

    Article  ADS  Google Scholar 

  29. Lindefelt U. Resonances and rotation symmetries in the conductance of armchair carbon nanotubes with extended defect pairs. Phys Rev B, 2005, 72: 153405

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiYun Qian.

Additional information

Recommended by LONG GuiLu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, H., Zhou, T. Electronic properties of multi-defected zigzag carbon nanotubes. Sci. China Phys. Mech. Astron. 53, 11–15 (2010). https://doi.org/10.1007/s11433-010-0107-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-0107-0

Keywords

Navigation