Skip to main content
Log in

Surface segregation of hydrogen in free-standing Pd-H alloy nanofilms

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The interaction between mechanics and chemistry plays an essential and critical role in the behaviors and properties of materials, especially in nanoscale alloys. Based on the classical Gibbs and McLean adsorption isotherms, the present study takes the freestanding nanometer thick films of Pd-H solid solutions as a typic example to investigate surface segregation of hydrogen. The surface eigenstress model is further developed here to give analytic formulas, which have the capability to quantitatively predict the size-dependent surface segregation. Molecular dynamics (MD) simulations are conducted on free-standing Pd-H nanofilms. The MD simulations verify the theoretical analytic results and determine the values of parameters involved in the theoretical analysis. The integrated theoretical and numerical study exhibits that both surface excess H concentration and apparent biaxial Young’s modulus of Pd-H thin films depend on the nominal H concentration and the film thickness. The MD simulations determine the values of three parameters involved in the theoretical analysis. Especially, the parameter of the differentiation in reference chemical potential behaves like the molar free energy of segregation in the McLean adsorption isotherm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cammarata R C. Surface and interface stress effects in thin films. Prog Surf Sci, 1994, 46: 1–38

    Google Scholar 

  2. Ibach H. The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf Sci Rep, 1997, 29: 195–263

    Google Scholar 

  3. Griessen R, Strohfeldt N, Giessen H. Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles. Nat Mater, 2016, 15: 311–317

    Google Scholar 

  4. Syrenova S, Wadell C, Nugroho F A A, et al. Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape. Nat Mater, 2015, 14: 1236–1244

    Google Scholar 

  5. Gibbs J. The Scientific Papers. New York: Dover, 1961

    MATH  Google Scholar 

  6. Maclean D. Grain Boundaries in Metals. Oxford: Clarendon Press, 1957

    Google Scholar 

  7. Li J C M, Oriani R A, Darken L S. The thermodynamics of stressed solids. Z für Physikalische Chem, 1966, 49: 271–290

    Google Scholar 

  8. Larché F, Cahn J W. A linear theory of thermochemical equilibrium of solids under stress. Acta Metall, 1973, 21: 1051–1063

    Google Scholar 

  9. Zhang T Y, Chu W Y, Hsiao C M. Mechanism of hydrogen induced softening. Scripta Metall, 1986, 20: 225–230

    Google Scholar 

  10. Zhang T Y, Chu W Y, Hsiao C M. Tetragonal distortion field of hydrogen atoms in iron. Metall Trans A, 1985, 16: 1649–1653

    Google Scholar 

  11. Zhang T Y, Hack J E. The equilibrium concentration of hydrogen atoms ahead of a mixed mode I-Mode III crack tip in single crystal iron. Metall Mat Trans A, 1999, 30: 155–159

    Google Scholar 

  12. Larché F, Cahn J W. A nonlinear theory of thermochemical equilibrium of solids under stress. Acta Metall, 1978, 26: 53–60

    Google Scholar 

  13. Chen-Min Li J. Physical chemistry of some microstructural phenomena. Metall Trans A, 1978, 9: 1353–1380

    Google Scholar 

  14. Shuttleworth R. The surface tension of solids. Proc Phys Soc A, 1950, 63: 444–457

    Google Scholar 

  15. Muller P. Elastic effects on surface physics. Surf Sci Rep, 2004, 54: 157–258

    Google Scholar 

  16. Zhang T Y, Luo M, Chan W K. Size-dependent surface stress, surface stiffness, and Young’s modulus of hexagonal prism [111] β-SiC nanowires. J Appl Phys, 2008, 103: 104308

    Google Scholar 

  17. Gurtin M E, Ian Murdoch A. A continuum theory of elastic material surfaces. Arch Rational Mech Anal, 1975, 57: 291–323

    MathSciNet  MATH  Google Scholar 

  18. Gurtin M E, Ian Murdoch A. Surface stress in solids. Int J Solids Struct, 1978, 14: 431–440

    MATH  Google Scholar 

  19. Zhang T Y, Wang Z J, Chan W K. Eigenstress model for surface stress of solids. Phys Rev B, 2010, 81: 195427

    Google Scholar 

  20. Zhang T Y, Ren H, Wang Z J, et al. Surface eigen-displacement and surface Poisson’s ratios of solids. Acta Mater, 2011, 59: 4437–4447

    Google Scholar 

  21. Chan W K, Luo M, Zhang T Y. Molecular dynamics simulations of four-point bending tests on SiC nanowires. Scripta Mater, 2008, 59: 692–695

    Google Scholar 

  22. Chan W K, Zhang T Y. Mechanics analysis and atomistic simulations of nanobridge tests. J Appl Phys, 2010, 107: 023526

    Google Scholar 

  23. Wang Z J, Liu C, Li Z, et al. Size-dependent elastic properties of Au nanowires under bending and tension—Surfaces versus core non-linearity. J Appl Phys, 2010, 108: 083506

    Google Scholar 

  24. Zhou X Y, Ren H, Huang B L, et al. Size-dependent elastic properties of thin films: Surface anisotropy and surface bonding. Sci China Tech Sci, 2014, 57: 680–691

    Google Scholar 

  25. Zhou X Y, Ren H, Huang B L, et al. Surface-induced size-dependent ultimate tensile strength of thin films. Phys Lett A, 2015, 379: 471–481

    Google Scholar 

  26. Zhou X Y, Huang B L, Zhang T Y. Size- and temperature-dependent Young’s modulus and size-dependent thermal expansion coefficient of thin films. Phys Chem Chem Phys, 2016, 18: 21508–21517

    Google Scholar 

  27. Sun H L, Chen L Y, Sun S, et al. Size- and temperature-dependent Young’s modulus and size-dependent thermal expansion coefficient of nanowires. Sci China Tech Sci, 2018, 61: 687–698

    Google Scholar 

  28. Lemier C, Weissmüller J. Grain boundary segregation, stress and stretch: Effects on hydrogen absorption in nanocrystalline palladium. Acta Mater, 2007, 55: 1241–1254

    Google Scholar 

  29. Zhang T Y, Ren H. Solute concentrations and strains in nanograined materials. Acta Mater, 2013, 61: 477–493

    Google Scholar 

  30. Ren H, Yang X, Gao Y, et al. Solute concentrations and stresses in nanograined H-Pd solid solution. Acta Mater, 2013, 61: 5487–5495

    Google Scholar 

  31. Yamauchi M, Ikeda R, Kitagawa H, et al. Nanosize effects on hydrogen storage in palladium. J Phys Chem C, 2016, 112: 3294–3299

    Google Scholar 

  32. Sachs C, Pundt A, Kirchheim R, et al. Solubility of hydrogen in single-sized palladium clusters. Phys Rev B, 2001, 64: 075408

    Google Scholar 

  33. Ingham B, Toney M F, Hendy S C, et al. Particle size effect of hydrogen-induced lattice expansion of palladium nanoclusters. Phys Rev B, 2008, 78: 245408

    Google Scholar 

  34. Zhang T Y, Ren H. Solute concentrations and strains in nanoparticles. J Thermal Stresses, 2013, 36: 626–645

    Google Scholar 

  35. Ren H, Zhang T Y. H concentrations and stresses in Pd nanoparticles. Mater Lett, 2014, 130: 176–179

    Google Scholar 

  36. Lebouin C, Soldo Y, Grigoriev S A, et al. Kinetics of hydrogen sorption by palladium nanoparticles. Int J Hydrogen Energy, 2013, 38: 966–972

    Google Scholar 

  37. Wagner S, Kramer T, Uchida H, et al. Mechanical stress and stress release channels in 10–350 nm palladium hydrogen thin films with different micro-structures. Acta Mater, 2016, 114: 116–125

    Google Scholar 

  38. R D Debiaggi S, Crespo E A, Braschi F U, et al. Hydrogen absorption in Pd thin-films. Int J Hydrogen Energy, 2014, 39: 8590–8595

    Google Scholar 

  39. Swaminarayan S, Srolovitz D J. Surface segregation in thin films. Acta Mater, 1996, 44: 2067–2072

    Google Scholar 

  40. Cahn J W. On spinodal decomposition. Acta Metall, 1961, 9: 795–801

    Google Scholar 

  41. Li Y S, Li S X, Zhang T Y. Effect of dislocations on spinodal decomposition in Fe-Cr alloys. J Nucl Mater, 2009, 395: 120–130

    Google Scholar 

  42. Weissmüller J, Duan H L, Farkas D. Deformation of solids with nanoscale pores by the action of capillary forces. Acta Mater, 2010, 58: 1–13

    Google Scholar 

  43. Weissmüller J, Cahn J W. Mean stresses in microstructures due to interface stresses: A generalization of a capillary equation for solids. Acta Mater, 1997, 45: 1899–1906

    Google Scholar 

  44. Lacher J R. A theoretical formula for the solubility of hydrogen in palladium. Proc R Soc Lond A, 1937, 161: 525–545

    Google Scholar 

  45. Simons J W, Flanagan T B. Absorption isotherms of hydrogen in the α-phase of the hydrogen-palladium system. J Phys Chem, 1965, 69: 3773–3781

    Google Scholar 

  46. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117: 1–19

    MATH  Google Scholar 

  47. Senftle T P, Janik M J, van Duin A C T. A ReaxFF investigation of hydride formation in palladium nanoclusters via monte carlo and molecular dynamics simulations. J Phys Chem C, 2014, 118: 4967–4981

    Google Scholar 

  48. Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys, 1984, 52: 255–268

    Google Scholar 

  49. Martyna G J, Tobias D J, Klein M L. Constant pressure molecular dynamics algorithms. J Chem Phys, 1994, 101: 4177–4189

    Google Scholar 

  50. Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys, 1981, 52: 7182–7190

    Google Scholar 

  51. Shinoda W, Shiga M, Mikami M. Rapid estimation of elastic constants by molecular dynamics simulation under constant stress. Phys Rev B, 2004, 69: 134103

    Google Scholar 

  52. Yamanaka S, Yoshioka K, Uno M, et al. Thermal and mechanical properties of zirconium hydride. J Alloys Compd, 1999, 293–295: 23–29

    Google Scholar 

  53. Smith R J, Otterson D A. The effect of hydrogen on the tensile properties of palladium. J Less Common Met, 1971, 24: 419–426

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (Grant No. 2017YFB0701604). S. Sun also acknowledges support by the National Natural Science Foundation of China (Grant No. 11672168).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng Sun or TongYi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, H., Mai, J., Gao, Y. et al. Surface segregation of hydrogen in free-standing Pd-H alloy nanofilms. Sci. China Technol. Sci. 62, 1735–1746 (2019). https://doi.org/10.1007/s11431-019-9529-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-019-9529-4

Keywords

Navigation