Skip to main content
Log in

Microstructural ordering of nanofibers in flow-directed assembly

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Fabrication of highly ordered and dense nanofibers assemblies is of key importance for high-performance and multi-functional material and device applications. In this work, we design an experimental approach in silico, where shear flow and solvent evaporation are applied to tune the alignment, overlap of nanofibers, and density of the assemblies. Microscopic dynamics of the process are probed by dissipative particle dynamics simulations, where hydrodynamic and thermal fluctuation effects are fully modeled. We find that microstructural ordering of the assembled nanofibers can be established within a specific range of the Peclet numbers and evaporation rates, while the properties of nanofibers and their interaction are crucial for the local stacking order. The underlying mechanisms are elucidated by considering the competition between hydrodynamic coupling and thermal fluctuation. Based on these understandings, a practical design of flow channels for nanofiber assembly with promising mechanical performance is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Behabtu N, Young C C, Tsentalovich D E, et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science, 2013, 339: 182–186

    Article  Google Scholar 

  2. Zhang M, Wang Y, Huang L, et al. Multifunctional pristine chemically modified graphene films as strong as stainless steel. Adv Mater, 2015, 27: 6708–6713

    Article  Google Scholar 

  3. Egan P, Sinko R, LeDuc P R, et al. The role of mechanics in biological and bio-inspired systems. Nat Commun, 2015, 6: 7418

    Article  Google Scholar 

  4. Gao E, Lu W, Xu Z. Strength loss of carbon nanotube fibers explained in a three-level hierarchical model. Carbon, 2018, 138: 134–142

    Article  Google Scholar 

  5. Launey M E, Buehler M J, Ritchie R O. On the mechanistic origins of toughness in bone. Ann Rev Mater Res, 2010, 40: 25–53

    Article  Google Scholar 

  6. Liu Y, Xie B, Zhang Z, et al. Mechanical properties of graphene papers. J Mech Phys Solids, 2012, 60: 591–605

    Article  MathSciNet  MATH  Google Scholar 

  7. Lu W, Zu M, Byun J H, et al. State of the art of carbon nanotube fibers: Opportunities and challenges. Adv Mater, 2012, 24: 1805–1833

    Article  Google Scholar 

  8. Zhu H, Zhu S, Jia Z, et al. Anomalous scaling law of strength and toughness of cellulose nanopaper. Proc Natl Acad Sci USA, 2015, 112: 8971–8976

    Article  Google Scholar 

  9. Xie B, Buehler M J, Xu Z. Directed self-assembly of end-functionalized nanofibers: From percolated networks to liquid crystal-like phases. Nanotechnology, 2015, 26: 205602

    Article  Google Scholar 

  10. Lin S, Ryu S, Tokareva O, et al. Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres. Nat Commun, 2015, 6: 6892

    Article  Google Scholar 

  11. Rising A, Johansson J. Toward spinning artificial spider silk. Nat Chem Biol, 2015, 11: 309–315

    Article  Google Scholar 

  12. Su B, Wu Y, Jiang L. The art of aligning one-dimensional (1D) nanostructures. Chem Soc Rev, 2012, 41: 7832–7856

    Article  Google Scholar 

  13. Xu Z, Gao C. Graphene in macroscopic order: Liquid crystals and wet-spun fibers. Acc Chem Res, 2014, 47: 1267–1276

    Article  Google Scholar 

  14. Hobbie E K, Fry D J. Nonequilibrium phase diagram of sticky nanotube suspensions. Phys Rev Lett, 2006, 97: 036101

    Article  Google Scholar 

  15. Kwon G, Heo Y, Shin K, et al. Electrical percolation networks of carbon nanotubes in a shear flow. Phys Rev E, 2012, 85: 011143

    Article  Google Scholar 

  16. Shim J S, Yun Y H, Rust M J, et al. The precise self-assembly of individual carbon nanotubes using magnetic capturing and fluidic alignment. Nanotechnology, 2009, 20: 325607

    Article  Google Scholar 

  17. Richardson J J, Björnmalm M, Caruso F. Technology-driven layer-by-layer assembly of nanofilms. Science, 2015, 348: aaa2491

    Article  Google Scholar 

  18. Gantenbein S, Masania K, Woigk W, et al. Three-dimensional printing of hierarchical liquid-crystal-polymer structures. Nature, 2018, 561: 226–230

    Article  Google Scholar 

  19. Hausmann M K, Rühs P A, Siqueira G, et al. Dynamics of cellulose nanocrystal alignment during 3D printing. ACS Nano, 2018, 12: 6926–6937

    Article  Google Scholar 

  20. Jeffery G B. The motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc A-Math Phys Eng Sci, 1922, 102: 161–179

    Article  MATH  Google Scholar 

  21. Meirson G, Hrymak A N. Two-dimensional long-flexible fiber simulation in simple shear flow. Polym Compos, 2016, 37: 2425–2433

    Article  Google Scholar 

  22. Dong R Y, Cao B Y. Anomalous orientations of a rigid carbon na-notube in a sheared fluid. Sci Rep, 2015, 4: 6120

    Article  Google Scholar 

  23. Leal L G, Hinch E J. The effect of weak Brownian rotations on particles in shear flow. J Fluid Mech, 1971, 46: 685–703

    Article  MATH  Google Scholar 

  24. Sader J E, Pepperell C J, Dunstan D E. Measurement of the optical properties and shape of nanoparticles in solution using Couette flow. ACS Nano, 2008, 2: 334–340

    Article  Google Scholar 

  25. Stover C A, Koch D L, Cohen C. Observations of fibre orientation in simple shear flow of semi-dilute suspensions. J Fluid Mech, 2006, 238: 277–296

    Article  Google Scholar 

  26. Tannous C. Langevin simulations of rod-shaped object alignment by surface flow. Surf Sci, 2011, 605: 923–929

    Article  Google Scholar 

  27. Duggal R, Pasquali M. Dynamics of individual single-walled carbon nanotubes in water by real-time visualization. Phys Rev Lett, 2006, 96: 246104

    Article  Google Scholar 

  28. Pujari S, Rahatekar S S, Gilman J W, et al. Orientation dynamics in multiwalled carbon nanotube dispersions under shear flow. J Chem Phys, 2009, 130: 214903

    Article  Google Scholar 

  29. Brinker C J, Lu Y, Sellinger A, et al. Evaporation-induced self-assembly: Nanostructures made easy. Adv Mater, 1999, 11: 579–585

    Article  Google Scholar 

  30. Marín Á G, Gelderblom H, Lohse D, et al. Order-to-disorder transition in ring-shaped colloidal stains. Phys Rev Lett, 2011, 107: 085502

    Article  Google Scholar 

  31. Marín Á G, Gelderblom H, Lohse D, et al. Rush-hour in evaporating coffee drops. Phys Fluids, 2011, 23: 091111

    Article  Google Scholar 

  32. Bigioni T P, Lin X M, Nguyen T T, et al. Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat Mater, 2006, 5: 265–270

    Article  Google Scholar 

  33. Narayanan S, Wang J, Lin X M. Dynamical self-assembly of nanocrystal superlattices during colloidal droplet evaporation by in situ small angle X-ray scattering. Phys Rev Lett, 2004, 93: 135503

    Article  Google Scholar 

  34. Lee S G, Kim H, Choi H H, et al. Evaporation-induced self-alignment and transfer of semiconductor nanowires by wrinkled elastomeric templates. Adv Mater, 2013, 25: 2162–2166

    Article  Google Scholar 

  35. Groot R D, Rabone K L. Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. BioPhys J, 2001, 81: 725–736

    Article  Google Scholar 

  36. Groot R D, Warren P B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J Chem Phys, 1997, 107: 4423–4435

    Article  Google Scholar 

  37. Xu Z, Yang Y, Zhu G, et al. Simulating transport of soft matter in micro/nano channel flows with dissipative particle dynamics. Adv Theor Simul, 2018, 4: 1800160

    Google Scholar 

  38. Allen M P, Tildesley D J. Computer Simulation of Liquids. Oxford: Clarendon Press, 1987

    MATH  Google Scholar 

  39. Davis V A, Ericson L M, Parra-Vasquez A N G, et al. Phase behavior and rheology of SWNTs in superacids. Macromolecules, 2004, 37: 154–160

    Article  Google Scholar 

  40. Tuckerman M, Berne B J, Martyna G J. Reversible multiple time scale molecular dynamics. J Chem Phys, 1992, 97: 1990–2001

    Article  Google Scholar 

  41. Hobbie E K. Shear rheology of carbon nanotube suspensions. Rheol Acta, 2010, 49: 323–334

    Article  Google Scholar 

  42. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117: 1–19

    Article  MATH  Google Scholar 

  43. Zhang W, Lin J, Xu W, et al. SCStore: Managing scientific computing packages for hybrid system with containers. Tinshhua Sci Technol, 2017, 22: 675–681

    Article  Google Scholar 

  44. Doi M, Edwards S F. The Theory of Polymer Dynamics. Oxford: Clarendon Press, 1988

    Google Scholar 

  45. Börzsönyi T, Szabó B, Wegner S, et al. Shear-induced alignment and dynamics of elongated granular particles. Phys Rev E, 2012, 86: 051304

    Article  Google Scholar 

  46. Yang X, He P, Gao H. Competing elastic and adhesive interactions govern deformation behaviors of aligned carbon nanotube arrays. Appl Phys Lett, 2012, 101: 053105

    Article  Google Scholar 

  47. Nakajima T. Advanced Fiber Spinning Technology. Cambridge: Woodhead Publishing, 1994

    Google Scholar 

  48. Ko H, Tsukruk V V. Liquid-crystalline processing of highly oriented carbon nanotube arrays for thin-film transistors. Nano Lett, 2006, 6: 1443–1448

    Article  Google Scholar 

  49. Xie D, Lista M, Qiao G G, et al. Shear induced alignment of low aspect ratio gold nanorods in newtonian fluids. J Phys Chem Lett, 2015, 6: 3815–3820

    Article  Google Scholar 

  50. Davis V A, Parra-Vasquez A N G, Green M J, et al. True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat Nanotech, 2009, 4: 830–834

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ChuanHua Duan or ZhiPing Xu.

Additional information

This work was supported by the Opening Project of Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province (Grant No. SZDKF-1601), and the National Natural Science Foundation of China (Grant Nos. 11222217, 11472150). The simulations were performed on the Explorer 100 cluster system of Tsinghua National Laboratory for Information Science and Technology.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, E., Wang, S., Duan, C. et al. Microstructural ordering of nanofibers in flow-directed assembly. Sci. China Technol. Sci. 62, 1545–1554 (2019). https://doi.org/10.1007/s11431-018-9421-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9421-5

Keywords

Navigation