Skip to main content
Log in

Structural heterogeneity and deformation rheology in metallic glasses

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The atomic structure and associated deformation behavior of metallic glasses (MGs) have been long standing issues. Although recent computational/experimental results indicate that the structure of MGs is heterogeneous at the nano scale, the fundamental knowledge of the atomic basis for such structural heterogeneity and its impact on the overall properties of MGs is still lacking. We reviewed recent research on unraveling the structure heterogeneity in MGs, with emphases on the use of dynamic atomic force microscopy, the characterization of glass anelasticity by nanoindentation, and the establishment of numerous correlations with structural heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angell C A. Formation of glasses from liquids and biopolymers. Science, 1995, 267: 1924–1935

    Article  Google Scholar 

  2. Dyre J C. The glass transition and elastic models of glass-forming. Rev Mod Phys, 2006, 78: 953–972

    Article  Google Scholar 

  3. Debenedetti P G, Stillinger F H. Supercooled liquids and the glass transition. Nature, 2001, 410: 259–267

    Article  Google Scholar 

  4. Gaskell P H. Structure, glass formation and properties. J Non-Cryst Solids, 1995, 192–193: 9–22

    Article  Google Scholar 

  5. Gibbs J H, DiMarzio E A. Nature of the glass transition and the glassy state. J Chem Phys, 1958, 28: 373

    Article  Google Scholar 

  6. Wang W H, Dong C, Shek C H. Bulk metallic glasses. Mater Sci Eng R, 2004, 44: 45–89

    Article  Google Scholar 

  7. Greer A L, Ma E. Bulk metallic glasses: At the cutting edge of metals research. MRS Bull, 2007, 32: 611–619

    Article  Google Scholar 

  8. Wang W H. Bulk metallic glasses with functional physical properties. Adv Mater, 2009, 21: 4524–4544

    Article  Google Scholar 

  9. Wang Q, Yang Y, Jiang H, et al. Superior tensile ductility in bulk metallic glass with gradient amorphous structure. Scientific Reports, 2014, 4: 4757

    Google Scholar 

  10. Schuh C A, Hufnagel T C, Ramamurty U. Mechanical behavior of amorphous alloys. Acta Mater, 2007, 55: 4067–4109

    Article  Google Scholar 

  11. Chen M W. Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility. Annu Rev Mater Res, 2008, 38: 445–469

    Article  Google Scholar 

  12. Yavari A R, Lewandowski J J, Eckert J. Mechanical properties of bulk metallic glasses. MRS Bull, 2007, 32: 635–638

    Article  Google Scholar 

  13. Johnson W L. Bulk amorphous metal-An emerging engineering material. JOM, 2002, 54: 40–43

    Article  Google Scholar 

  14. Cheng Y Q, Ma E. Atomic-level structure and structure-property relationship in metallic glasses. Prog Mater Sci, 2011, 56: 379–473

    Article  MathSciNet  Google Scholar 

  15. Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica, 1977, 25: 407–415

    Article  Google Scholar 

  16. Egami T. Atomic level stresses. Prog Mater Sci, 2011, 56: 637–653

    Article  Google Scholar 

  17. Johnson W L, Demetriou M D, Harmon J S, et al. Rheology and ultrasonic properties of metallic glass-forming liquids: A potential energy landscape perspective. MRS Bull, 2007, 32: 644–650

    Article  Google Scholar 

  18. Langer J S. Dynamics of shear-transformation zones in amorphous plasticity: Formulation in terms of an effective disorder temperature. Phys Rev E, 2004, 70: 041502

    Article  Google Scholar 

  19. Ke H B, Zeng J F, Liu C T, et al. Structure heterogeneity in metallic glass: Modeling and experiment. J Mater Sci Tech, 2014, 30: 560–565

    Article  Google Scholar 

  20. Liu Y H, Wang D, Nakajima K, et al. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy. Phys Rev Lett, 2011, 106: 125504

    Article  Google Scholar 

  21. Wagner H, Bedorf D, Küchemann S, et al. Local elastic properties of a metallic glass. Nat Mater, 2011, 10: 439–442

    Article  Google Scholar 

  22. Ye J C, Lu J, Liu C T, et al. Atomistic free-volume zones and inelastic deformation of metallic glasses. Nat Mater, 2010, 9: 619–623

    Article  Google Scholar 

  23. Liu Z, Yang Y, Liu C. Yielding and shear banding of metallic glasses. Acta Materialia, 2013, 61: 5928–5936

    Article  Google Scholar 

  24. Tanaka H. Two-order-parameter model of the liquid-glass transition. II. Structural relaxation and dynamic heterogeneity. J Non-Cryst Solids, 2005, 351: 3385–3395

    Article  Google Scholar 

  25. Tanaka H. Critical-like behaviour of glass-forming liquids. Nat Mater, 2010, 9: 324–331

    Article  Google Scholar 

  26. Xia X, Wolyners P G. Fragilities of liquids predicted from the random first order transition theory of glasses. Proc Natl Acad Sci USA, 2000, 97: 2990–2994

    Article  Google Scholar 

  27. Yang Y, Zeng J F, Ye J C, et al. Structural inhomogeneity and anelastic deformation in metallic glasses revealed by spherical nanoindentation. Appl Phys Lett, 2010, 97: 261905

    Article  Google Scholar 

  28. Huo L S, Zeng J F, Wang W H, et al. The dependence of shear modulus on dynamic relaxation and evolution of local structural heterogeneity in a metallic glass. Acta Mater, 2013, 61: 4329–4338

    Article  Google Scholar 

  29. Liu Z, Yang Y. A mean-field model for anelastic deformation in metallicglasses. Intermetallics, 2012, 26: 86–90

    Article  Google Scholar 

  30. Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog Mater Sci, 2012, 57: 487–656

    Article  Google Scholar 

  31. Zeng J, Chu J, Chen Y, et al. On the use of atomic force microscopy for structural mapping of metallic-glass thin films. Intermetallics, 2014, 44: 121–127

    Article  Google Scholar 

  32. Pan D, Inoue A, Sakurai T, et al. Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses. Proc Nat Acad Sci, 2008, 105: 14769–14772

    Article  Google Scholar 

  33. Zhang Y, Zhao D Q, Wang R J, et al. Formation and properties of Zr48Nb8Cu14Ni12Be18 bulk metallic glass. Acta Mater, 2003, 51: 1971–1979

    Article  Google Scholar 

  34. Wang W H, Macht M P, Wollenberger H. Enhanced thermal stability and microhardness in metallic glass ZrTiCuNiBe alloys by carbon addition. Appl Phys Lett, 1997, 71: 58

    Article  Google Scholar 

  35. Zhang Y, Zhao D Q, Wang R J, et al. Glass forming ability and properties of Zr/Nb-based bulk metallic glasses. Mater Trans, 2000, 41: 1423–1426

    Article  Google Scholar 

  36. Wang W H, Fan G J, Wang R J, et al. Formation and properties of Zr-[Ti, Nb]-Cu-Ni-Al bulk metallic glasses. Mater Trans, 2001, 42: 587

    Article  Google Scholar 

  37. Wei B C, Löser W, Xia L, et al. Anomalous thermal stability of Nd-Fe-Al-Co bulk metallic glass. Acta Mater, 2002, 50: 4357–4367

    Article  Google Scholar 

  38. Xi X K, Zhao D Q, Pan M X, et al. Glass-forming Mg-Cu-RE (RE=Gd, Pr, Nd, Tb, Y and Dy) alloys with strong oxygen resistance in manufacturability. J Non-Cryst Solids, 2004, 344: 105

    Article  Google Scholar 

  39. Zhang B, Pan M X, Zhao Q, et al. “Soft” bulk metallic glasses based on cerium. Appl Phys Lett, 2004, 85: 61–63

    Article  Google Scholar 

  40. Zhang B, Zhao D Q, Pan M X, et al. Formation of cerium based bulk metallic glasses. Acta Mater, 2006, 54: 3025–3032

    Article  Google Scholar 

  41. Li S, Xi X K, Wei Y X, et al. Formation and properties of new heavy rare-earth-based bulk metallic glasses. Sci Technol Adv Mater, 2005, 6: 823

    Article  Google Scholar 

  42. Li Z, Bai H Y, Wang W L, et al. Formation, properties, thermal characteristics and crystallization of hard magnetic Pr-Al-Fe-Cu bulk metallic glasses. J Mater Res, 2003, 18: 2208

    Article  Google Scholar 

  43. Wang W H. Correlation between elastic moduli and properties in bulk metallic glasses. J Appl Phys, 2006, 99: 093506

    Article  Google Scholar 

  44. Xu D H, Duan G, Johnson W L. Formation and properties of new Ni-based amorphous alloys with critical casting thickness up to 5 mm. Acta Mater, 2004, 52: 3493

    Article  Google Scholar 

  45. Johnson W L, Samwer K. A universal criterion for plastic yielding of metallic glasses with a (T-Tg)2/3 temperature dependence. Phys Rev Lett, 2005, 95: 195501

    Article  Google Scholar 

  46. Tang M B, Zhao D Q, Pan M X, et al. Binary Cu-Zr bulk metallic glasses. Chin Phys Lett, 2004, 21: 901–903

    Article  Google Scholar 

  47. Yu P, Bai H Y, Wang W H. Superior glass-forming ability of metallic alloys from microalloying. J Mater Res, 2006, 21: 1674–1679

    Article  Google Scholar 

  48. Duan G, Xu D H, Zhang Q, et al. Molecular dynamics study of the binary Cu46Zr54 metallic glass motivated by experiments: Glass formation and atomic-level structure. Phys Rev B, 2005, 71: 224208

    Article  Google Scholar 

  49. Xu D H, Duan G, Johnson W L. Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys Rev Lett, 2004, 92: 245505

    Article  Google Scholar 

  50. Golding B, Bagley B G, Hsu F S L. Soft transverse phonons in a metallic glass. Phys Rev Lett, 1972, 29: 68

    Article  Google Scholar 

  51. Wang W H, Wang R J, Yang W T, et al. Stability of ZrTiCuNiBe bulk metallic glass upon isothermal annealing near the glass transition temperature. J Mater Res, 2002, 17: 1385–1389

    Article  Google Scholar 

  52. Greaves G N, Greer A L, Lakes R S, et al. Poisson’s ratio and modern materials. Nat Mater, 2011, 10: 823–837

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, H., Liu, C. & Yang, Y. Structural heterogeneity and deformation rheology in metallic glasses. Sci. China Technol. Sci. 58, 47–55 (2015). https://doi.org/10.1007/s11431-014-5665-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-014-5665-3

Keywords

Navigation