Skip to main content
Log in

Adaptive integration of local region information to detect fine-scale brain activity patterns

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

With the rapid development of functional magnetic resonance imaging (fMRI) technology, the spatial resolution of fMRI data is continuously growing. This provides us the possibility to detect the fine-scale patterns of brain activities. The established univariate and multivariate methods to analyze fMRI data mostly focus on detecting the activation blobs without considering the distributed fine-scale patterns within the blobs. To improve the sensitivity of the activation detection, in this paper, multivariate statistical method and univariate statistical method are combined to discover the fine-grained activity patterns. For one voxel in the brain, a local homogenous region is constructed. Then, time courses from the local homogenous region are integrated with multivariate statistical method. Univariate statistical method is finally used to construct the interests of statistic for that voxel. The approach has explicitly taken into account the structures of both activity patterns and existing noise of local brain regions. Therefore, it could highlight the fine-scale activity patterns of the local regions. Experiments with simulated and real fMRI data demonstrate that the proposed method dramatically increases the sensitivity of detection of fine-scale brain activity patterns which contain the subtle information about experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ogawa S, Lee T, Kay A, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA, 1990, 87(24): 9868–9872

    Article  Google Scholar 

  2. Kwong K, Belliveau J, Chesler D, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA, 1992, 89(12): 5675–5679

    Article  Google Scholar 

  3. Petersson K, Nichols T, Poline J, et al. Statistical limitations in functional neuroimaging I. non-inferential methods and statistical models. Philos Trans R Soc Lond B Biol Sci, 1999, 354(1387): 1240–1260

    Google Scholar 

  4. Petersson K, Nichols T, Poline J, et al. Statistical limitations in functional neuroimaging II, signal detection and statistical inference. Philos Trans R Soc Lond B Biol Sci, 1999, 354(1387): 1261–1281

    Article  Google Scholar 

  5. Friston K, Holmes A, Worsley K, et al. Statistical parametric maps in functional imaging: A general linear approach. Hum Brain Mapp, 1995, 2(4): 189–210

    Article  Google Scholar 

  6. Friston K, Holmes A, Poline J, et al. Analysis of fMRI time-series revisited. NeuroImage, 1995, 2(1): 45–53

    Article  Google Scholar 

  7. Friston K, Josephs O, Zarahn E, et al. To smooth or not to smooth? Bias and efficiency in fMRI time-series analysis. NeuroImage, 2000, 12(2): 196–208

    Article  Google Scholar 

  8. Kriegeskorte N, Goebel R, Bandettini P. Information-based functional brain mapping. Proc Natl Acad Sci USA, 2006, 103(10): 3863–3868

    Article  Google Scholar 

  9. Bandettini P. Functional MRI today. Int J Psychophysiol, 2007, 63(2): 138–145

    Article  Google Scholar 

  10. Friston K, Frith C, Liddle P, et al. Functional connectivity: The principal component analysis of large (PET) data sets. J Cereb Blood Flow Metab, 1993, 13(1): 5–14

    Google Scholar 

  11. McKeown M, Makeig S, Brown G, et al. Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp, 1998, 6(3): 160–188

    Article  Google Scholar 

  12. Formisano E, Esposito F, Kriegeskorte N, et al. Spatial independent component analysis of functional magnetic resonance imaging time-series: characterization of the cortical components. Neurocomputing, 2002, 49(1–4): 241–254

    Article  Google Scholar 

  13. Calhoun V, Adali T, Pearlson G, et al. Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Hum Brain Mapp, 2001, 13(1): 43–53

    Article  Google Scholar 

  14. Duann J, Jung T, Kuo W, et al. Single-trial variability in event-related BOLD signals. NeuroImage, 2002, 15(4): 823–835

    Article  Google Scholar 

  15. Strother S, Anderson J, Hansen L, et al. The quantitative evaluation of functional neuroimaging experiments: the NPAIRS data analysis framework. NeuroImage, 2002, 15(4): 747–771

    Article  Google Scholar 

  16. Turner R. How much cortex can a vein drain? Down stream dilution of activation-related cerebral blood oxygenation changes. NeuroImage, 2002, 16(4): 1062–1067

    Article  Google Scholar 

  17. Andersen A H, Gash D M, Avison M J. Principal component analysis of the dynamic response measured by fMRI: A generalized linear systems framework. Magn Reson Imaging, 1999, 17(6): 795–815

    Article  Google Scholar 

  18. Worsley K, Poline J, Friston K, et al. Characterizing the response of PET and fMRI data using multivariate linear models. NeuroImage, 1998, 6(4): 305–319

    Article  Google Scholar 

  19. McIntosh A, Chau W, Protzner A. Spatiotemporal analysis of event-related fMRI data using partial least squares. NeuroImage, 2004 23(2): 764–775

    Article  Google Scholar 

  20. Tononi G, McIntosh A, Russell D, et al. Functional clustering: identifying strongly interactive brain regions in neuroimaging data. NeuroImage, 1998, 7(2): 133–149

    Article  Google Scholar 

  21. Katanoda K, Matsuda Y, Sugishita M, et al. A spatial-temporal regression model for the analysis of functional MRI data. NeuroImage, 2002, 17(3): 1415–1428

    Article  Google Scholar 

  22. Zang Y, Jiang T, Lu Y, et al. Regional homogeneity approach to fMRI data analysis. NeuroImage, 2004, 22(1): 394–400

    Article  Google Scholar 

  23. Morel J, Solimini S. Variational Methods in Image Segmentation. Basel: Birkhauser Publishing, Inc, 1995

    Google Scholar 

  24. Lu Y, Jiang T, Zang Y, et al. Region growing method for the analysis of functional MRI data. NeuroImage, 2003, 20(1): 455–465

    Article  Google Scholar 

  25. Bellec P, Perlbarg V, Jbabdi S, et al. Identification of large-scale networks in the brain using fMRI. NeuroImage, 2006, 29(4): 1231–1243

    Article  Google Scholar 

  26. Friston K J, Fletcher P, Josephs O, et al. Event-related fMRI: characterizing differential responses. NeuroImage, 1998, 7(1): 30–40

    Article  Google Scholar 

  27. Langer N. Tutorial in biostatistics: statistical approaches to human brain mapping by functional magnetic resonance imaging. Stat Med, 1996, 15(4): 389–428

    Article  Google Scholar 

  28. Sorenson J, Wang X. ROC methods for evaluation of fMRI techniques. Magn Reson Med, 1996, 36(5): 737–744

    Article  Google Scholar 

  29. Skudlarski P, Constable R T, Gore J C. ROC analysis of statistical methods used in functional MRI: individual subjects. NeuroImage, 1999, 9(3): 311–329

    Article  Google Scholar 

  30. Nichols T, Holmes A. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp, 2000, 15(1): 1–25

    Article  Google Scholar 

  31. Efron B, Tibshirani R. An Introduction to the Bootstrap. New York: Chapman Hall, 1993. 202–219

    MATH  Google Scholar 

  32. Genovese C, Lazar N, Nichols T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage, 2002, 15(4): 870–878

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Tian.

Additional information

Supported by Chair Professors of Changjiang Scholars Program and CAS Hundred Talents Program, National Program on Key Basic Research Projects (Grant No. 2006CB705700), National High-Tech R&D Program of China (Grant No.2006AA04Z216), National Key Technology R&D Program (Grant No. 2006BAH02A25), Joint Research Fund for Overseas Chinese Young Scholars (Grant No.30528027), National Natural Science Foundation of China (Grant Nos.30600151, 30500131 and 60532050), and Natural Science Foundation of Beijing (Grant Nos. 4051002 and 4071003)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhen, Z., Tian, J. & Zhang, H. Adaptive integration of local region information to detect fine-scale brain activity patterns. Sci. China Ser. E-Technol. Sci. 51, 1980–1989 (2008). https://doi.org/10.1007/s11431-008-0124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-008-0124-7

Keywords

Navigation