Skip to main content
Log in

Current humanized mouse models for studying human immunology and HIV-1 immuno-pathogenesis

  • Special Topic
  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

A robust animal model for “hypothesis-testing/mechanistic” research in human immunology and immuno-pathology should meet the following criteria. First, it has well-studied hemato-lymphoid organs and target cells similar to those of humans. Second, the human pathogens establish infection and lead to relevant diseases. Third, it is genetically inbred and can be manipulated via genetic, immunological and pharmacological means. Many human-tropic pathogens such as HIV-1 fail to infect murine cells due to the blocks at multiple steps of their life cycle. The mouse with a reconstituted human immune system and other human target organs is a good candidate. A number of human-mouse chimeric models with human immune cells have been developed in the past 20 years, but most with only limited success due to the selective engraftment of xeno-reactive human T cells in hu-PBL-SCID mice or the lack of significant human immune responses in the SCID-hu Thy/Liv mouse. This review summarizes the current understanding of HIV-1 immuno-pathogenesis in human patients and in SIV-infected primate models. It also reviews the recent progress in the development of humanized mouse models with a functional human immune system, especially the recent progress in the immunodeficient mice that carry a defective gammaC gene. NOD/SCID/gammaC−/− (NOG or NSG) or the Rag2−/−gammaC−/− double knockout (DKO) mice, which lack NK as well as T and B cells (NTB-null mice), have been used to reconstitute a functional human immune system in central and peripheral lymphoid organs with human CD34+ HSC. These NTB-hu HSC humanized models have been used to investigate HIV-1 infection, immuno-pathogenesis and therapeutic interventions. Such models, with further improvements, will contribute to study human immunology, human-tropic pathogens as well as human stem cell biology in the tissue development and function in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. UNAIDS/ WHO. AIDS epidemic update: December 2009. Geneva: UNAIDS/WHO.

  2. Gray R H, Wawer M J, Brookmeyer R, et al. Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-discordant couples in Rakai, Uganda. Lancet, 2001, 357: 1149–1153 10.1016/S0140-6736(00)04331-2, 1:STN:280:DC%2BD3MzisFejug%3D%3D, 11323041

    Article  PubMed  CAS  Google Scholar 

  3. Bentwich Z, Maartens G, Torten D, et al. Concurrent infections and HIV pathogenesis. Aids, 2000, 14: 2071–2081 10.1097/00002030-200009290-00002, 1:STN:280:DC%2BD3crgvFWrsA%3D%3D, 11061647

    Article  PubMed  CAS  Google Scholar 

  4. Dalgleish A G, Beverley P C, Clapham P R, et al. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature, 1984, 312: 763–767 10.1038/312763a0, 1:STN:280:DyaL2M%2Fos1amsw%3D%3D, 6096719

    Article  PubMed  CAS  Google Scholar 

  5. Klatzmann D, Champagne E, Chamaret S, et al. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature, 1984, 312: 767–768 10.1038/312767a0, 1:STN:280:DyaL2M%2Fos1amsA%3D%3D, 6083454

    Article  PubMed  CAS  Google Scholar 

  6. Alkhatib G, Combadiere C, Broder C C, et al. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science, 1966, 272: 1955–1958 10.1126/science.272.5270.1955

    Article  Google Scholar 

  7. Deng H, Liu R, Ellmeier W, et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature, 1996, 381: 661–666 10.1038/381661a0, 1:CAS:528:DyaK28XjslClsrk%3D, 8649511

    Article  PubMed  CAS  Google Scholar 

  8. Dragic T, Litwin V, Allaway G P, et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature, 1996, 381: 667–673 10.1038/381667a0, 1:CAS:528:DyaK28XjslCks7o%3D, 8649512

    Article  PubMed  CAS  Google Scholar 

  9. Feng Y, Broder C C, Kennedy P E, et al. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science, 1996, 272: 872–877 10.1126/science.272.5263.872, 1:CAS:528:DyaK28XivFajsLc%3D, 8629022

    Article  PubMed  CAS  Google Scholar 

  10. Daar E S, Moudgil T, Meyer R D, et al. Transient high levels of viremia in patients with primary human immunodeficiency virus type 1 infection. N Engl J Med, 1991, 324: 961–964 1:STN:280:DyaK3M7mtlGquw%3D%3D, 1823118, 10.1056/NEJM199104043241405

    Article  PubMed  CAS  Google Scholar 

  11. Borrow P, Lewicki H, Hahn B H, et al. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol, 1994, 68: 6103–6110 1:CAS:528:DyaK2cXlsFGmt7w%3D, 8057491

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Wilson J D, Ogg G S, Allen R L, et al. Direct visualization of HIV-1-specific cytotoxic T lymphocytes during primary infection. Aids, 2000, 14: 225–233 10.1097/00002030-200002180-00003, 1:STN:280:DC%2BD3c7nvFansw%3D%3D, 10716497

    Article  PubMed  CAS  Google Scholar 

  13. Piatak M Jr, Saag M S, Yang L C, et al. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science, 1993, 259: 1749–1754 10.1126/science.8096089, 1:CAS:528:DyaK3sXisFars7o%3D, 8096089

    Article  PubMed  CAS  Google Scholar 

  14. Ho D D, Neumann A U, Perelson A S, et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature, 1995, 373: 123–126 10.1038/373123a0, 1:CAS:528:DyaK2MXjtFSrt7o%3D, 7816094

    Article  PubMed  CAS  Google Scholar 

  15. Wei X, Ghosh S K, Taylor M E, et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature, 1995, 373: 117–122 10.1038/373117a0, 1:CAS:528:DyaK2MXjtFSrt70%3D, 7529365

    Article  PubMed  CAS  Google Scholar 

  16. Pantaleo G, Graziosi C, Demarest J F, et al. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature, 1993, 362: 355–358 10.1038/362355a0, 1:STN:280:DyaK3s3gsFWhsQ%3D%3D, 8455722

    Article  PubMed  CAS  Google Scholar 

  17. Embretson J, Zupancic M, Ribas J L, et al. Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature, 1993, 362: 359–362 10.1038/362359a0, 1:STN:280:DyaK3s3gsFWhtg%3D%3D, 8096068

    Article  PubMed  CAS  Google Scholar 

  18. Pantaleo G, Graziosi C, Butini L, et al. Lymphoid organs function as major reservoirs for human immunodeficiency virus. Proc Natl Acad Sci USA, 1991, 88: 9838–9842 10.1073/pnas.88.21.9838, 1:STN:280:DyaK38%2Flt1WrtA%3D%3D, 1682922

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Margolick J B, Munoz A, Donnenberg A D, et al. Failure of T-cell homeostasis preceding AIDS in HIV-1 infection. The Multicenter AIDS Cohort Study. Nat Med, 1995, 1: 674–680 1:CAS:528:DyaK2MXms1KgsbY%3D

    PubMed  CAS  Google Scholar 

  20. Weiss R A. Gulliver’s travels in HIVland. Nature, 2001, 410: 963–967 10.1038/35073632, 1:CAS:528:DC%2BD3MXjt1Kru74%3D, 11309625

    Article  PubMed  CAS  Google Scholar 

  21. Gonzalez-Scarano F, Martin-Garcia J. The neuropathogenesis of AIDS. Nat Rev Immunol, 2005, 5: 69–81 10.1038/nri1527, 1:CAS:528:DC%2BD2MXlvVOn, 15630430

    Article  PubMed  CAS  Google Scholar 

  22. Simmonds P, Beatson D, Cuthbert R J, et al. Determinants of HIV disease progression: six-year longitudinal study in the Edinburgh haemophilia/HIV cohort. Lancet, 1991, 338: 1159–1163 10.1016/0140-6736(91)92029-2, 1:STN:280:DyaK38%2Fkslyktg%3D%3D, 1682589

    Article  PubMed  CAS  Google Scholar 

  23. Meyaard L, Otto S A, Jonker R R, et al. Programmed death of T cells in HIV-1 infection. Science, 1992, 257: 217–219 10.1126/science.1352911, 1:STN:280:DyaK38zjsFymug%3D%3D, 1352911

    Article  PubMed  CAS  Google Scholar 

  24. Gougeon M L, Garcia S, Heeney J, et al. Programmed cell death in AIDS-related HIV and SIV infections. AIDS Res Hum Retroviruses, 1993, 9: 553–563 10.1089/aid.1993.9.553, 1:STN:280:DyaK3szkvFGrsw%3D%3D, 8102239

    Article  PubMed  CAS  Google Scholar 

  25. Oyaizu N, McCloskey T W, Coronesi M, et al. Accelerated apoptosis in peripheral blood mononuclear cells (PBMCs) from human immunodeficiency virus type-1 infected patients and in CD4 cross-linked PBMCs from normal individuals. Blood, 1993, 82: 3392–3400 1:STN:280:DyaK2c%2FmtVektg%3D%3D, 7902137

    PubMed  CAS  Google Scholar 

  26. Kovacs J A, Lempicki R A, Sidorov I A, et al. Identification of dynamically distinct subpopulations of T lymphocytes that are differentially affected by HIV. J Exp Med, 2001, 194: 1731–1741 10.1084/jem.194.12.1731, 1:CAS:528:DC%2BD38Xpt1Wk, 11748275

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Hellerstein M, Hanley M B, Cesar D, et al. Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans. Nat Med, 1999, 5: 83–89 10.1038/4772, 1:CAS:528:DyaK1MXmtFOhsg%3D%3D, 9883844

    Article  PubMed  CAS  Google Scholar 

  28. Lempicki R A, Kovacs J A, Baseler M W, et al. Impact of HIV-1 infection and highly active antiretroviral therapy on the kinetics of CD4+ and CD8+ T cell turnover in HIV-infected patients. Proc Natl Acad Sci USA, 2000, 97: 13778–13783 10.1073/pnas.250472097, 1:CAS:528:DC%2BD3cXoslyns7o%3D, 11095734

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Mohri H, Perelson A S, Tung K, et al. Increased turnover of T lymphocytes in HIV-1 infection and its reduction by antiretroviral therapy. J Exp Med, 2001, 194: 1277–1287 10.1084/jem.194.9.1277, 1:CAS:528:DC%2BD3MXot12msbs%3D, 11696593

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Roederer M, Dubs J G, Anderson M T, et al. CD8 naive T cell counts decrease progressively in HIV-infected adults. J Clin Invest, 1995, 95: 2061–2066 10.1172/JCI117892, 1:CAS:528:DyaK2MXltlWrtrc%3D, 7738173

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Chun T W, Carruth L, Finzi D, et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature, 1997, 387: 183–188 10.1038/387183a0, 1:CAS:528:DyaK2sXjtF2gtr8%3D, 9144289

    Article  PubMed  CAS  Google Scholar 

  32. Brinchmann J E, Albert J, Vartdal F. Few infected CD4+ T cells but a high proportion of replication-competent provirus copies in asymptomatic human immunodeficiency virus type 1 infection. J Virol, 1991, 65: 2019–2023 1:STN:280:DyaK3M7mt1Omtg%3D%3D, 1672165

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Grossman Z, Meier-Schellersheim M, Sousa A E, et al. CD4+ T-cell depletion in HIV infection: are we closer to understanding the cause? Nat Med, 2002, 8: 319–323 10.1038/nm0402-319, 1:CAS:528:DC%2BD38XivVGntLc%3D, 11927927

    Article  PubMed  CAS  Google Scholar 

  34. Guadalupe M, Reay E, Sankaran S, et al. Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J Virol, 2003, 77: 11708–11717 10.1128/JVI.77.21.11708-11717.2003, 1:CAS:528:DC%2BD3sXosFSisr4%3D, 14557656

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Brenchley J M, Schacker T W, Ruff L E, et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med, 2004, 200: 749–759 10.1084/jem.20040874, 1:CAS:528:DC%2BD2cXnvFeisrY%3D, 15365096

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Mosier D E, Gulizia R J, Baird S M, et al. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature, 1988, 335: 256–259 10.1038/335256a0, 1:STN:280:DyaL1czhvV2qtA%3D%3D, 2970594

    Article  PubMed  CAS  Google Scholar 

  37. Tary-Lehmann M, Lehmann P V, Schols D, et al. Anti-SCID mouse reactivity shapes the human CD4+ T cell repertoire in hu-PBL-SCID chimeras. J Exp Med, 1994, 180: 1817–1827 10.1084/jem.180.5.1817, 1:STN:280:DyaK2M%2FltlOisA%3D%3D, 7964463

    Article  PubMed  CAS  Google Scholar 

  38. Tary-Lehmann M, Saxon A. Human mature T cells that are anergic in vivo prevail in SCID mice reconstituted with human peripheral blood. J Exp Med, 1992, 175: 503–516 10.1084/jem.175.2.503, 1:CAS:528:DyaK38Xot1ShsQ%3D%3D, 1346272

    Article  PubMed  CAS  Google Scholar 

  39. McCune J M, Namikawa R, Kaneshima H, et al. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science, 1988, 241: 1632–1639 10.1126/science.2971269, 1:STN:280:DyaL1czjs1yqtQ%3D%3D, 2971269

    Article  PubMed  CAS  Google Scholar 

  40. Su L. HIV-1 pathogenesis and therapeutic intervention in the SCID-hu Thy/Liv mouse: a model for primary HIV-1 infection in the human thymus. Rev Med Virol, 1997, 7: 157–166 10.1002/(SICI)1099-1654(199709)7:3<157::AID-RMV197>3.0.CO;2-R, 10398480

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hiramatsu H, Nishikomori R, Heike T, et al. Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/gammacnull mice model. Blood, 2003, 102: 873–880 10.1182/blood-2002-09-2755, 1:CAS:528:DC%2BD3sXlvFCmsbw%3D, 12689924

    Article  PubMed  CAS  Google Scholar 

  42. Ishikawa F, Yasukawa M, Lyons B, et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood, 2005, 106: 1565–1573 10.1182/blood-2005-02-0516, 1:CAS:528:DC%2BD2MXps1OgsL0%3D, 15920010

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Ito M, Hiramatsu H, Kobayashi K, et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood, 2002, 100: 3175–3182 10.1182/blood-2001-12-0207, 1:CAS:528:DC%2BD38XosVSisLg%3D, 12384415

    Article  PubMed  CAS  Google Scholar 

  44. Watanabe S, Terashima K, Ohta S, et al. Hematopoietic stem cell-engrafted NOD/SCID/IL2Rgamma null mice develop human lymphoid systems and induce long-lasting HIV-1 infection with specific humoral immune responses. Blood, 2007, 109: 212–218 10.1182/blood-2006-04-017681, 1:CAS:528:DC%2BD2sXivVyrur8%3D, 16954502

    Article  PubMed  CAS  Google Scholar 

  45. Shultz L D, Ishikawa F, Greiner D L. Humanized mice in translational biomedical research. Nat Rev Immunol, 2007, 7: 118–130 10.1038/nri2017, 1:CAS:528:DC%2BD2sXpvVCisA%3D%3D, 17259968

    Article  PubMed  CAS  Google Scholar 

  46. Traggiai E, Chicha L, Mazzucchelli L, et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science, 2004, 304: 104–107 10.1126/science.1093933, 1:CAS:528:DC%2BD2cXis1ansLY%3D, 15064419

    Article  PubMed  CAS  Google Scholar 

  47. Carballido J M, Namikawa R, Carballido-Perrig N, et al. Generation of primary antigen-specific human T- and B-cell responses in immunocompetent SCID-hu mice. Nat Med, 2000, 6: 103–106 10.1038/71434, 1:CAS:528:DC%2BD3cXks1WksQ%3D%3D, 10613834

    Article  PubMed  CAS  Google Scholar 

  48. Melkus M W, Estes J D, Padgett-Thomas A, et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med, 2006, 12: 1316–1322 10.1038/nm1431, 1:CAS:528:DC%2BD28XhtFKlsLbO, 17057712

    Article  PubMed  CAS  Google Scholar 

  49. Denton P W, Estes J D, Sun Z, et al. Antiretroviral pre-exposure prophylaxis prevents vaginal transmission of HIV-1 in humanized BLT mice. PLoS Med, 2008 5: e16 10.1371/journal.pmed.0050016, 18198941, 1:CAS:528:DC%2BD1cXmvVSlsbY%3D

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sun Z, Denton P W, Estes J D, et al. Intrarectal transmission, systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1. J Exp Med, 2007, 204: 705–714 10.1084/jem.20062411, 1:CAS:528:DC%2BD2sXksFSqtbs%3D, 17389241

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Wege A K, Melkus M W, Denton P W, et al. Functional and phenotypic characterization of the humanized BLT mouse model. Curr Top Microbiol Immunol, 2008, 324: 149–165 10.1007/978-3-540-75647-7_10, 1:CAS:528:DC%2BD1cXosFGns74%3D, 18481459

    PubMed  CAS  Google Scholar 

  52. Jiang Q, Zhang L, Wang R, et al. FoxP3+CD4+ regulatory T cells play an important role in acute HIV-1 infection in humanized Rag2−/−gammaC−/− mice in vivo. Blood, 2008, 112: 2858–2868 10.1182/blood-2008-03-145946, 1:CAS:528:DC%2BD1cXht1Srtb%2FE, 18544681

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Zhang L, Kovalev G I, Su L. HIV-1 infection and pathogenesis in a novel humanized mouse model. Blood, 2007, 109: 2978–2981 1:CAS:528:DC%2BD2sXjvVynsb0%3D, 17132723

    PubMed  CAS  PubMed Central  Google Scholar 

  54. Baenziger S, Tussiwand R, Schlaepfer E, et al. Disseminated and sustained HIV infection in CD34+ cord blood cell-transplanted Rag2−/−gamma c−/− mice. Proc Natl Acad Sci USA, 2006, 103: 15951–15956 10.1073/pnas.0604493103, 1:CAS:528:DC%2BD28XhtFyls7jM, 17038503

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Meissner E G, Coffield V M, Su L. Thymic pathogenicity of an HIV-1 envelope is associated with increased CXCR4 binding efficiency and V5-gp41-dependent activity, but not V1/V2-associated CD4 binding efficiency and viral entry. Virology, 2005, 336: 184–197 10.1016/j.virol.2005.03.032, 1:CAS:528:DC%2BD2MXktVGksb0%3D, 15892960

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Meissner E G, Zhang L, Jiang S, et al. Fusion-induced apoptosis contributes to thymocyte depletion by a pathogenic human immunodeficiency virus type 1 envelope in the human thymus. J Virol, 2006, 80: 11019–11030 10.1128/JVI.01382-06, 1:CAS:528:DC%2BD28Xht1KhurrO, 16956934

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Sivaraman V, Zhang L, Meissner E G, et al. The heptad repeat 2 domain is a major determinant for enhanced human immunodeficiency virus type 1 (HIV-1) fusion and pathogenicity of a highly pathogenic HIV-1 Env. J Virol, 2009, 83: 11715–11725 10.1128/JVI.00649-09, 19726524, 1:CAS:528:DC%2BC3cXksFKqt7g%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Berges B K, Akkina S R, Remling L, et al. Humanized Rag2(−/−) gammac(−/−) (RAG-hu) mice can sustain long-term chronic HIV-1 infection lasting more than a year. Virology, 2010, 397: 100–103 10.1016/j.virol.2009.10.034, 1:CAS:528:DC%2BC3cXnvFartw%3D%3D, 19922970

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Choudhary S K, Rezk N L, Ince W L, et al. Suppression of human immunodeficiency virus type 1 (HIV-1) viremia with reverse transcriptase and integrase inhibitors, CD4+ T-cell recovery, and viral rebound upon interruption of therapy in a new model for HIV treatment in the humanized Rag2−/−{gamma}c−/− mouse. J Virol, 2009, 83: 8254–8258 10.1128/JVI.00580-09, 1:CAS:528:DC%2BD1MXpsFOltbs%3D, 19494021

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Hofer U, Baenziger S, Heikenwalder M, et al. RAG2−/− gamma(c)−/− mice transplanted with CD34+ cells from human cord blood show low levels of intestinal engraftment and are resistant to rectal transmission of human immunodeficiency virus. J Virol, 2008, 82: 12145–12153 10.1128/JVI.01105-08, 1:CAS:528:DC%2BD1cXhsVymsL7J, 18842716

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Berges B K, Akkina S R, Folkvord J M, et al. Mucosal transmission of R5 and X4 tropic HIV-1 via vaginal and rectal routes in humanized Rag2−/− gammac−/− (RAG-hu) mice. Virology, 2008, 373: 342–351 10.1016/j.virol.2007.11.020, 1:CAS:528:DC%2BD1cXjs1Wju78%3D, 18207484

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Amado R G, Jamieson B D, Cortado R, et al. Reconstitution of human thymic implants is limited by human immunodeficiency virus breakthrough during antiretroviral therapy. J Virol, 1999, 73: 6361–6369 1:CAS:528:DyaK1MXksFKntr4%3D, 10400728

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Brainard D M, Seung E, Frahm N, et al. Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. J Virol, 2009, 83: 7305–7321 10.1128/JVI.02207-08, 1:CAS:528:DC%2BD1MXosFKluro%3D, 19420076

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Holmes D, Jiang Q, Zhang L, et al. Foxp3 and Treg cells in HIV-1 infection and immuno-pathogenesis. Immunol Res, 2008, 41: 248–266 10.1007/s12026-008-8037-x, 1:CAS:528:DC%2BD1cXht1KqtbrK, 18726715

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Holmes D, Knudsen G, Mackey-Cushman S, et al. FoxP3 enhances HIV-1 gene expression by modulating NFkappaB occupancy at the long terminal repeat in human T cells. J Biol Chem, 2007, 282: 15973–15980 10.1074/jbc.M702051200, 1:CAS:528:DC%2BD2sXlvVajs70%3D, 17416586

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Chen Q, Khoury M, Chen J. Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci USA, 2009, 51: 21783–21788 10.1073/pnas.0912274106

    Article  Google Scholar 

  67. Huntington N D, Legrand N, Alves N L, et al. IL-15 transpresentation promotes human NK cell development and differentiation in vivo. J Exp Med, 2009, 206: 25–34 10.1084/jem.20082013, 1:CAS:528:DC%2BD1MXhtVOhtbw%3D, 19103877

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Strowig T, Gurer C, Ploss A, et al. Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. J Exp Med, 2009, 206: 1423–1434 10.1084/jem.20081720, 19487422, 1:CAS:528:DC%2BD1MXntFGlsro%3D

    Article  PubMed  PubMed Central  Google Scholar 

  69. Jaiswal S, Pearson T, Friberg H, et al. Dengue virus infection and virus-specific HLA-A2 restricted immune responses in humanized NOD-scid IL2rgammanull mice. PLoS One, 2009, 4: e7251 10.1371/journal.pone.0007251, 19802382, 1:CAS:528:DC%2BD1MXht1Clt7%2FJ

    Article  PubMed  PubMed Central  Google Scholar 

  70. Haridass D, Yuan Q, Becker P D, et al. Repopulation efficiencies of adult hepatocytes, fetal liver progenitor cells, and embryonic stem cell-derived hepatic cells in albumin-promoter-enhancer urokinasetype plasminogen activator mice. Am J Pathol, 2009, 175: 1483–1492 10.2353/ajpath.2009.090117, 1:CAS:528:DC%2BD1MXhtlWiurzO, 19717639

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Suemizu H, Hasegawa M, Kawai K, et al. Establishment of a humanized model of liver using NOD/Shi-scid IL2Rgnull mice. Biochem Biophys Res Commun, 2008, 377: 248–252 10.1016/j.bbrc.2008.09.124, 1:CAS:528:DC%2BD1cXhtlaqsbzI, 18840406

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to LiGuo Zhang or LiShan Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Meissner, E., Chen, J. et al. Current humanized mouse models for studying human immunology and HIV-1 immuno-pathogenesis. Sci. China Life Sci. 53, 195–203 (2010). https://doi.org/10.1007/s11427-010-0059-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-0059-7

Keywords

Navigation