Skip to main content
Log in

CO2 electrolysis at industrial current densities using anion exchange membrane based electrolyzers

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Significant progress on electrocatalytic CO2 reduction reaction (CO2RR) has been achieved in recent years. However, the research and development of electrolyzer device for CO2RR is scarce. Here we use anion exchange membrane to develop zero-gap electrolyzers for CO2RR. The electrochemical properties of the electrolyzers with Pd/C and Cu cathodes are investigated. The Pd/C cathode shows a current density of 200 mA cm−2 with CO Faradaic efficiency of 98% and energy efficiency of 48.8%, while the Cu cathode shows a current density of 350 mA cm−2 with total CO2RR Faradaic efficiency of 81.9% and energy efficiency of 30.5%. This work provides a promising demonstration of CO2 electrolyzer using anion exchange membrane for CO2 electrolysis at industrial current densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen C, Khosrowabadi Kotyk JF, Sheehan SW. Chem, 2018, 4: 2571–2586

    Article  CAS  Google Scholar 

  2. Gao D, Aràn-Ais RM, Jeon HS, Roldan Cuenya B. Nat Catal, 2019, 2: 198–210

    Article  CAS  Google Scholar 

  3. Li F, Thevenon A, Rosas-Hernàndez A, Wang Z, Li Y, Gabardo CM, Ozden A, Dinh CT, Li J, Wang Y, Edwards JP, Xu Y, McCallum C, Tao L, Liang ZQ, Luo M, Wang X, Li H, O’Brien CP, Tan CS, Nam DH, Quintero-Bermudez R, Zhuang TT, Li YC, Han Z, Britt RD, Sinton D, Agapie T, Peters JC, Sargent EH. Nature, 2020, 577: 509–513

    Article  CAS  Google Scholar 

  4. Ren S, Joulié D, Salvatore D, Torbensen K, Wang M, Robert M, Berlinguette CP. Science, 2019, 365: 367–369

    Article  CAS  Google Scholar 

  5. Yin Z, Peng H, Wei X, Zhou H, Gong J, Huai M, Xiao L, Wang G, Lu J, Zhuang L. Energy Environ Sci, 2019, 12: 2455–2462

    Article  CAS  Google Scholar 

  6. Gabardo CM, O’Brien CP, Edwards JP, McCallum C, Xu Y, Dinh CT, Li J, Sargent EH, Sinton D. Joule, 2019, 3: 2777–2791

    Article  CAS  Google Scholar 

  7. Zhu W, Kattel S, Jiao F, Chen JG. Adv Energy Mater, 2019, 9: 1802840

    Article  Google Scholar 

  8. Shao J, Wang Y, Gao D, Ye K, Wang Q, Wang G. Chin J Catal, 2020, 41: 1393–1400

    Article  CAS  Google Scholar 

  9. Li S, Saranya G, Chen M, Zhu Y. Sci China Chem, 2020, 63: 722–730

    Article  CAS  Google Scholar 

  10. Ye K, Cao A, Shao J, Wang G, Si R, Ta N, Xiao J, Wang G. Sci Bull, 2020, 65: 711–719

    Article  CAS  Google Scholar 

  11. Jia S, Zhu Q, Wu H, Chu M, Han S, Feng R, Tu J, Zhai J, Han B. Chin J Catal, 2020, 41: 1091–1098

    Article  CAS  Google Scholar 

  12. Gao D, Zhou H, Wang J, Miao S, Yang F, Wang G, Wang J, Bao X. J Am Chem Soc, 2015, 137: 4288–4291

    Article  CAS  Google Scholar 

  13. Salvatore D, Berlinguette CP. ACS Energy Lett, 2020, 5: 215–220

    Article  CAS  Google Scholar 

  14. Weekes DM, Salvatore DA, Reyes A, Huang A, Berlinguette CP. Acc Chem Res, 2018, 51: 910–918

    Article  CAS  Google Scholar 

  15. Gao D, Cai F, Xu Q, Wang G, Pan X, Bao X. J Energy Chem, 2014, 23: 694–700

    Article  Google Scholar 

  16. Kutz RB, Chen Q, Yang H, Sajjad SD, Liu Z, Masel IR. Energy Technol, 2017, 5: 929–936

    Article  CAS  Google Scholar 

  17. Salvatore DA, Weekes DM, He J, Dettelbach KE, Li YC, Mallouk TE, Berlinguette CP. ACS Energy Lett, 2018, 3: 149–154

    Article  CAS  Google Scholar 

  18. Gutiérrez-Guerra N, Gonzàlez JA, Serrano-Ruiz JC, López-Fernàndez E, Valverde JL, de Lucas-Consuegra A. J Energy Chem, 2019, 31: 46–53

    Article  Google Scholar 

  19. Wang G, Pan J, Jiang SP, Yang H. J CO2 Utilization, 2018, 23: 152–158

    Article  CAS  Google Scholar 

  20. Weng LC, Bell AT, Weber AZ. Energy Environ Sci, 2019, 12: 1950–1968

    Article  CAS  Google Scholar 

  21. Reyes A, Jansonius RP, Mowbray BAW, Cao Y, Wheeler DG, Chau J, Dvorak DJ, Berlinguette CP. ACS Energy Lett, 2020, 5: 1612–1618

    Article  CAS  Google Scholar 

  22. Larrazàbal GO, Stram-Hansen P, Heli JP, Zeiter K, Therkildsen KT, Chorkendorff I, Seger B. ACS Appl Mater Interfaces, 2019, 11: 41281–41288

    Article  Google Scholar 

  23. Lee WH, Ko YJ, Choi Y, Lee SY, Choi CH, Hwang YJ, Min BK, Strasser P, Oh HS. Nano Energy, 2020, 76: 105030

    Article  CAS  Google Scholar 

  24. Ma C, Hou P, Wang X, Wang Z, Li W, Kang P. Appl Catal B-Environ, 2019, 250: 347–354

    Article  CAS  Google Scholar 

  25. Lee J, Lim J, Roh CW, Whang HS, Lee H. J CO2 Utilization, 2019, 31: 244–250

    Article  CAS  Google Scholar 

  26. Wakerley D, Lamaison S, Ozanam F, Menguy N, Mercier D, Marcus P, Fontecave M, Mougel V. Nat Mater, 2019, 18: 1222–1227

    Article  CAS  Google Scholar 

  27. Haas T, Krause R, Weber R, Demler M, Schmid G. Nat Catal, 2018, 1: 32–39

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2016YFB0600901), the National Natural Science Foundation of China (21573222, 91545202), Dalian National Laboratory for Clean Energy (DNL180404, DNL201924), Dalian Institute of Chemical Physics (DMTO201702), Dalian Outstanding Young Scientist Foundation (2017RJ03), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17020200), and the CAS Youth Innovation Promotion (Y201938).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dunfeng Gao or Guoxiong Wang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, P., Li, H., Lin, L. et al. CO2 electrolysis at industrial current densities using anion exchange membrane based electrolyzers. Sci. China Chem. 63, 1711–1715 (2020). https://doi.org/10.1007/s11426-020-9825-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9825-9

Navigation