Skip to main content
Log in

Metal ion-promoted fabrication of melanin-like poly(L-DOPA) nanoparticles for photothermal actuation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Melanin-inspired polymers are currently the focus of growing interest for a wide range of applications ranging from energy to biomedical area. Whilst researchers have made numerous attempts to prepare and utilize polydopamine nanoparticles (PDA NPs), they have made limited progress in developing and discovering another typical functional mimic of natural melanin, poly (levodopa) (P(L-DOPA)) NPs, probably due to the lack of facile synthetic strategies towards satisfactory structural and functional control of melanin-like NPs. Herein, we reported a one-pot preparation method towards P(L-DOPA) NPs with good yields and controllable size/property in an aqueous solution assisted by various metal ions (i.e., Ni(II), Mg(II), Ca(II), Fe(III), Mn(II), Co (II), Zn(II) and Cd(II)). Interestingly, the resulting P(L-DOPA) NPs exhibited enhanced light absorption and photothermal behaviors compared with well-established PDA NPs, which can be employed to further fabricate kinds of photothermal composite actuators with promising performances such as folding, switching, and forward-moving. This study offers a facile and robust way to synthesize new synthetic melanins beyond PDA, and facilitates further functional discovery and evolution of melanin-inspired polymers and composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Solano F. New J Sci, 2014, 2014: 1–28

    Google Scholar 

  2. Chang L, Chen F, Zhang X, Kuang T, Li M, Hu J, Shi J, Lee LJ, Cheng H, Li Y. ACS Appl Mater Interfaces, 2017, 9: 16553–16560

    CAS  PubMed  Google Scholar 

  3. Yang L, Gu B, Chen Z, Yue Y, Wang W, Zhang H, Liu X, Ren S, Yang W, Li Y. ACS Appl Mater Interfaces, 2019, 11: 30360–30367

    CAS  PubMed  Google Scholar 

  4. Zou Y, Wu T, Li N, Guo X, Li Y. Polymer, 2019, 186: 122042

    Google Scholar 

  5. Zhou J, Duan B, Fang Z, Song J, Wang C, Messersmith PB, Duan H. Adv Mater, 2014, 26: 701–705

    CAS  PubMed  Google Scholar 

  6. Yao A, Jiao X, Chen D, Li C. ACS Appl Mater Interfaces, 2019, 11: 7927–7935

    CAS  PubMed  Google Scholar 

  7. Zou Y, Wang Z, Chen Z, Zhang QP, Zhang Q, Tian Y, Ren S, Li Y. J Phys Chem C, 2019, 123: 5345–5352

    CAS  Google Scholar 

  8. Xiao M, Li Y, Allen MC, Deheyn DD, Yue X, Zhao J, Gianneschi NC, Shawkey MD, Dhinojwala A. ACS Nano, 2015, 9: 5454–5460

    CAS  PubMed  Google Scholar 

  9. Kohri M, Yanagimoto K, Kawamura A, Hamada K, Imai Y, Watanabe T, Ono T, Taniguchi T, Kishikawa K. ACS Appl Mater Interfaces, 2018, 10: 7640–7648

    CAS  PubMed  Google Scholar 

  10. Wang C, Wang D, Dai T, Xu P, Wu P, Zou Y, Yang P, Hu J, Li Y, Cheng Y. Adv Funct Mater, 2018, 28: 1802127

    Google Scholar 

  11. Shi X, Yang P, Peng X, Huang C, Qian Q, Wang B, He J, Liu X, Li Y, Kuang T. Polymer, 2019, 170: 65–75

    CAS  Google Scholar 

  12. Li Z, Wang T, Zhu F, Wang Z, Li Y. Chin Chem Lett, 2020, 31: 783–786

    CAS  Google Scholar 

  13. Dong Z, Gong H, Gao M, Zhu W, Sun X, Feng L, Fu T, Li Y, Liu Z. Theranostics, 2016, 6: 1031–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu Y, Ai K, Liu J, Deng M, He Y, Lu L. Adv Mater, 2013, 25: 1353–1359

    CAS  PubMed  Google Scholar 

  15. Wang S, Lin J, Wang Z, Zhou Z, Bai R, Lu N, Liu Y, Fu X, Jacobson O, Fan W, Qu J, Chen S, Wang T, Huang P, Chen X. Adv Mater, 2017, 29: 1701013

    Google Scholar 

  16. Wang Z, Xie Y, Li Y, Huang Y, Parent LR, Ditri T, Zang N, Rinehart JD, Gianneschi NC. Chem Mater, 2017, 29: 8195–8201

    CAS  Google Scholar 

  17. Yang P, Zhang S, Zhang N, Wang Y, Zhong J, Sun X, Qi Y, Chen X, Li Z, Li Y. ACS Appl Mater Interfaces, 2019, 11: 42671–42679

    CAS  PubMed  Google Scholar 

  18. Zhou Z, Yan Y, Hu K, Zou Y, Li Y, Ma R, Zhang Q, Cheng Y. Biomaterials, 2017, 141: 116–124

    CAS  PubMed  Google Scholar 

  19. Yang P, Zhang S, Chen X, Liu X, Wang Z, Li Y. MaterHoriz, 2020, 7: 746–761

    CAS  Google Scholar 

  20. Liu S, Pan J, Liu J, Ma Y, Qiu F, Mei L, Zeng X, Pan G. Small, 2018, 14: 1703968

    Google Scholar 

  21. Yang P, Gu Z, Zhu F, Li Y. CCS Chem, 2020, 2: 128–138

    Google Scholar 

  22. Wang Z, Zou Y, Li Y, Cheng Y. Small, 2020, 16: 1907042

    CAS  Google Scholar 

  23. Zhou X, McCallum NC, Hu Z, Cao W, Gnanasekaran K, Feng Y, Stoddart JF, Wang Z, Gianneschi NC. ACS Nano, 2019, 13: 10980–10990

    CAS  PubMed  Google Scholar 

  24. Saini AS, Tripathi A, Melo JS. RSC Adv, 2015, 5: 87206–87215

    CAS  Google Scholar 

  25. Strube OI, Büngeler A, Bremser W. Biomacromolecules, 2015, 16: 1608–1613

    CAS  PubMed  Google Scholar 

  26. Kim DJ, Ju KY, Lee JK. Bull Korean Chem Soc, 2012, 33: 3788–3792

    CAS  Google Scholar 

  27. della Vecchia NF, Cerruti P, Gentile G, Errico ME, Ambrogi V, D’Errico G, Longobardi S, Napolitano A, Paduano L, Carfagna C, d’Ischia M. Biomacromolecules, 2014, 15: 3811–3816

    CAS  PubMed  Google Scholar 

  28. Ito S. Pigment Cell Res, 2003, 16: 230–236

    CAS  PubMed  Google Scholar 

  29. Anastas P, Eghbali N. Chem Soc Rev, 2010, 39: 301–312

    CAS  PubMed  Google Scholar 

  30. Xie J, Li H, Zhou J, Cheng Y, Zhu C. Angew Chem Int Ed, 2012, 51: 1252–1255

    CAS  Google Scholar 

  31. Xiang S, Yang P, Guo H, Zhang S, Zhang X, Zhu F, Li Y. Macromol Rapid Commun, 2017, 38: 1700446

    Google Scholar 

  32. Ejima H, Richardson JJ, Liang K, Best JP, van Koeverden MP, Such GK, Cui J, Caruso F. Science, 2013, 341: 154–157

    CAS  PubMed  Google Scholar 

  33. Rahim MA, Björnmalm M, Bertleff-Zieschang N, Besford Q, Mettu S, Suma T, Faria M, Caruso F. Adv Mater, 2017, 29: 1606717

    Google Scholar 

  34. Dai Q, Geng H, Yu Q, Hao J, Cui J. Theranostics, 2019,9:3170–3190

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Li Y, Xie Y, Wang Z, Zang N, Carniato F, Huang Y, Andolina CM, Parent LR, Ditri TB, Walter ED, Botta M, Rinehart JD, Gianneschi NC. ACS Nano, 2016, 10: 10186–10194

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang Z, Carniato F, Xie Y, Huang Y, Li Y, He S, Zang N, Rinehart JD, Botta M, Gianneschi NC. Small, 2017, 13: 1701830

    Google Scholar 

  37. Wang X, Chen Z, Yang P, Hu J, Wang Z, Li Y. Polym Chem, 2019, 10: 4194–4200

    CAS  Google Scholar 

  38. Panzella L, Gentile G, D’Errico G, Della Vecchia NF, Errico ME, Napolitano A, Carfagna C, d’Ischia M. Angew Chem Int Ed, 2013, 52: 12684–12687

    CAS  Google Scholar 

  39. Ju KY, Fischer MC, Warren WS. ACS Nano, 2018, 12: 12050–12061

    CAS  PubMed  Google Scholar 

  40. Fan X, Ding Y, Liu Y, Liang J, Chen Y. ACS Nano, 2019, 13: 8124–8134

    CAS  PubMed  Google Scholar 

  41. Han B, Zhang YL, Zhu L, Li Y, Ma ZC, Liu YQ, Zhang XL, Cao XW, Chen QD, Qiu CW, Sun HB. Adv Mater, 2018, 1806386

  42. Zou Y, Chen X, Guo W, Liu X, Li Y. ACS Appl Energy Mater, 2020, 3: 2634–2642

    CAS  Google Scholar 

  43. Lin L, Hill EH, Peng X, Zheng Y. Acc Chem Res, 2018, 51: 1465–1474

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu Y, Ai K, Lu L. Chem Rev, 2014, 114: 5057–5115

    CAS  PubMed  Google Scholar 

  45. Huang L, Liu M, Huang H, Wen Y, Zhang X, Wei Y. Biomacromolecules, 2018, 19: 1858–1868

    CAS  PubMed  Google Scholar 

  46. Liu M, Zeng G, Wang K, Wan Q, Tao L, Zhang X, Wei Y. Nanoscale, 2016, 8: 16819–16840

    CAS  PubMed  Google Scholar 

  47. Li Z, Zhang X, Wang S, Yang Y, Qin B, Wang K, Xie T, Wei Y, Ji Y. Chem Sci, 2016, 7: 4741–4747

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Li Z, Yang Y, Wang Z, Zhang X, Chen Q, Qian X, Liu N, Wei Y, Ji Y. J Mater Chem A, 2017, 5: 6740–6746

    Google Scholar 

  49. Wei Y, Qi X, He S, Deng S, Liu D, Fu Q. ACS Appl Mater Interfaces, 2018, 10: 32922–32934

    CAS  PubMed  Google Scholar 

  50. Yang L, Wang Z, Fei G, Xia H. Macromol Rapid Commun, 2017, 38: 1700421

    Google Scholar 

  51. Zhao L, Liu Y, Xing R, Yan X. Angew Chem Int Ed, 2019, 132: 3821–3829

    Google Scholar 

  52. Habault D, Zhang H, Zhao Y. Chem Soc Rev, 2013, 42: 7244–7256

    CAS  PubMed  Google Scholar 

  53. Hu Y, Li Z, Lan T, Chen W. Adv Mater, 2016, 28: 10548–10556

    CAS  PubMed  Google Scholar 

  54. Han B, Zhang YL, Chen QD, Sun HB. Adv Funct Mater, 2018, 28: 1802235

    Google Scholar 

  55. Chen J, Feng J, Yang F, Aleisa R, Zhang Q, Yin Y. Angew Chem Int Ed, 2019, 58: 9275–9281

    CAS  Google Scholar 

  56. Zhang H, Zhang J, Tong X, Ma D, Zhao Y. Macromol Rapid Commun, 2013, 34: 1575–1579

    CAS  PubMed  Google Scholar 

  57. Zhang X, Yu Z, Wang C, Zarrouk D, Seo JWT, Cheng JC, Buchan AD, Takei K, Zhao Y, Ager JW, Zhang J, Hettick M, Hersam MC, Pisano AP, Fearing RS, Javey A. Nat Commun, 2014, 5: 2983

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21774079, 21975167), the National Key R&D Program of China (2019YFA0904500), the State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology (17kffk07), and the Fundamental Research Funds for Central Universities

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiwen Li.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yang, L., Yang, P. et al. Metal ion-promoted fabrication of melanin-like poly(L-DOPA) nanoparticles for photothermal actuation. Sci. China Chem. 63, 1295–1305 (2020). https://doi.org/10.1007/s11426-020-9797-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9797-3

Keywords

Navigation