Skip to main content
Log in

Highly efficient modulation of the electronic properties of organic semiconductors by surface doping with 2D molecular crystals

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Doping is a critically important strategy to modulate the properties of organic semiconductors (OSCs) to improve their optoelectrical performances. Conventional bulk doping involves the incorporation of foreign molecular species (i.e., dopants) into the lattice of the host OSCs, and thus disrupts the packing of the host OSCs and induces structural defects, which tends to reduce the mobility and (or) the on/off ratio in organic field-effect transistors (OFETs). In this article, we report a highly efficient and highly controllable surface doping strategy utilizing 2D molecular crystals (2DMCs) as dopants to boost the mobility and to modulate the threshold voltage of OFETs. The amount of dopants, i.e., the thickness of the 2DMCs, is controlled at monolayer precision, enabling fine tuning of the electrical properties of the OSCs at unprecedented accuracy. As a result, a prominent increase of the average mobility from 1.31 to 4.71 cm2 V−1s−1 and a substantial reduction of the threshold voltage from −18.5 to −1.8 V are observed. Meanwhile, high on/off ratios of up to 108 are retained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang F, Cheng S, Zhang X, Ren X, Li R, Dong H, Hu W. Adv Mater, 2018, 30: 1702415

    Article  CAS  Google Scholar 

  2. Park SK, Kim JH, Park SY. Adv Mater, 2018, 30: 1704759

    Article  CAS  Google Scholar 

  3. Paterson AF, Singh S, Fallon KJ, Hodsden T, Han Y, Schroeder BC, Bronstein H, Heeney M, McCulloch I, Anthopoulos TD. Adv Mater, 2018, 30: 1801079

    Article  CAS  Google Scholar 

  4. Zhang X, Dong H, Hu W. Adv Mater, 2018, 30: 1801048

    Article  CAS  Google Scholar 

  5. Sirringhaus H. Adv Mater, 2014, 26: 1319–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yao Y, Zhang L, Leydecker T, Samorì P. J Am Chem Soc, 2018, 140: 6984–6990

    Article  CAS  PubMed  Google Scholar 

  7. Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dötz F, Kastler M, Facchetti A. Nature, 2009, 457: 679–686

    Article  CAS  PubMed  Google Scholar 

  8. Huang K, Wu J, Chen Z, Xu H, Wu Z, Tao K, Yang T, Wu Q, Zhou H, Huang B, Chen H, Chen J, Liu C. ACS Nano, 2019, 13: 6618–6630

    Article  CAS  PubMed  Google Scholar 

  9. Kim JH, Yun SW, An BK, Han YD, Yoon SJ, Joo J, Park SY. Adv Mater, 2013, 25: 719–724

    Article  CAS  PubMed  Google Scholar 

  10. Xu Y, Sun H, Li W, Lin YF, Balestra F, Ghibaudo G, Noh YY. Adv Mater, 2017, 29: 1702729

    Article  CAS  Google Scholar 

  11. Kano M, Minari T, Tsukagoshi K. Appl Phys Lett, 2009, 94: 143304

    Article  CAS  Google Scholar 

  12. Zhang F, Dai X, Zhu W, Chung H, Diao Y. Adv Mater, 2017, 29: 1700411

    Article  CAS  Google Scholar 

  13. Xu Y, Sun H, Liu A, Zhu HH, Li W, Lin YF, Noh YY. Adv Mater, 2018, 30: 1801830

    Article  CAS  Google Scholar 

  14. Salzmann I, Heimel G, Oehzelt M, Winkler S, Koch N. Acc Chem Res, 2016, 49: 370–378

    Article  CAS  PubMed  Google Scholar 

  15. Lüssem B, Keum CM, Kasemann D, Naab B, Bao Z, Leo K. Chem Rev, 2016, 116: 13714–13751

    Article  PubMed  CAS  Google Scholar 

  16. Lüssem B, Tietze ML, Kleemann H, Hoßbach C, Bartha JW, Zakhidov A, Leo K. Nat Commun, 2013, 4: 2775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Jiang H, Hu P, Ye J, Zhang KK, Long Y, Hu W, Kloc C. Mater Chem C, 2018, 6: 1884–1902

    Article  CAS  Google Scholar 

  18. Shin N, Zessin J, Lee MH, Hambsch M, Mannsfeld SCB. Adv Funct Mater, 2018, 28: 1802265

    Article  CAS  Google Scholar 

  19. Aghamohammadi M, Rödel R, Zschieschang U, Ocal C, Boschker H, Weitz RT, Barrena E, Klauk H. ACS Appl Mater Interfaces, 2015, 7: 22775–22785

    Article  CAS  PubMed  Google Scholar 

  20. Gao J, Roehling JD, Li Y, Guo H, Moulé AJ, Grey JK. J Mater Chem C, 2013, 1: 5638

    Article  CAS  Google Scholar 

  21. Zessin J, Xu Z, Shin N, Hambsch M, Mannsfeld SCB. ACS Appl Mater Interfaces, 2019, 11: 2177–2188

    Article  CAS  PubMed  Google Scholar 

  22. Tietze ML, Pahner P, Schmidt K, Leo K, Lüssem B. Adv Funct Mater, 2015, 25: 2701–2707

    Article  CAS  Google Scholar 

  23. Khim D, Baeg KJ, Caironi M, Liu C, Xu Y, Kim DY, Noh YY. Adv Funct Mater, 2014, 24: 6252–6261

    Article  CAS  Google Scholar 

  24. Chen W, Gao X, Qi D, Chen S, Chen Z, Wee A. Adv Funct Mater, 2007, 17: 1339–1344

    Article  CAS  Google Scholar 

  25. Ito Y, Virkar AA, Mannsfeld S, Oh JH, Toney M, Locklin J, Bao Z. J Am Chem Soc, 2009, 131: 9396–9404

    Article  CAS  PubMed  Google Scholar 

  26. Asadi K, Wu Y, Gholamrezaie F, Rudolf P, Blom PWM. Adv Mater, 2009, 21: 4109–4114

    Article  CAS  Google Scholar 

  27. Mityashin A, Roscioni OM, Muccioli L, Zannoni C, Geskin V, Cornil J, Janssen D, Steudel S, Genoe J, Heremans P. ACS Appl Mater Interfaces, 2014, 6: 15372–15378

    Article  CAS  PubMed  Google Scholar 

  28. Chew AR, Ghosh R, Shang Z, Spano FC, Salleo A. J Phys Chem Lett, 2017, 8: 4974–4980

    Article  CAS  PubMed  Google Scholar 

  29. Erker S, Hofmann OT. J Phys Chem Lett, 2019, 10: 848–854

    Article  CAS  PubMed  Google Scholar 

  30. Arramel, Pan H, Xie A, Hou S, Yin X, Tang CS, Hoa NT, Birowosuto MD, Wang H, Dang C, Rusydi A, Wee ATS, Wu J. Nano Res, 2018, 12: 77–84

    Article  CAS  Google Scholar 

  31. Chen W, Qi D, Gao X, Wee ATS. Prog Surf Sci, 2009, 84: 279–321

    Article  CAS  Google Scholar 

  32. Hein MP, Zakhidov AA, Lüssem B, Jankowski J, Tietze ML, Riede MK, Leo K. Appl Phys Lett, 2014, 104: 013507

    Article  CAS  Google Scholar 

  33. Ma L, Lee WH, Park YD, Kim JS, Lee HS, Cho K. Appl Phys Lett, 2008, 92: 063310

    Article  CAS  Google Scholar 

  34. Oh JH, Wei P, Bao Z. Appl Phys Lett, 2010, 97: 243305

    Article  CAS  Google Scholar 

  35. Lu G, Blakesley J, Himmelberger S, Pingel P, Frisch J, Lieberwirth I, Salzmann I, Oehzelt M, Di Pietro R, Salleo A, Koch N, Neher D. Nat Commun, 2013, 4: 1588

    Article  PubMed  CAS  Google Scholar 

  36. Wang H, Wang J, Huang H, Yan X, Yan D. Org Electron, 2006, 7: 369–374

    Article  CAS  Google Scholar 

  37. Ante F, Kälblein D, Zschieschang U, Canzler TW, Werner A, Takimiya K, Ikeda M, Sekitani T, Someya T, Klauk H. Small, 2011, 7: 1186–1191

    Article  CAS  PubMed  Google Scholar 

  38. Kyndiah A, Cramer T, Albonetti C, Liscio F, Chiodini S, Murgia M, Biscarini F. Adv Electron Mater, 2015, 1: 1400036

    Article  CAS  Google Scholar 

  39. Hählen T, Vanoni C, Wäckerlin C, Jung TA, Tsujino S. Appl Phys Lett, 2012, 101: 033305

    Article  CAS  Google Scholar 

  40. Liu C, Jang J, Xu Y, Kim HJ, Khim D, Park WT, Noh YY, Kim JJ. Adv Funct Mater, 2015, 25: 758–767

    Article  CAS  Google Scholar 

  41. Yao J, Zhang Y, Tian X, Zhang X, Zhao H, Zhang X, Jie J, Wang X, Li R, Hu W. Angew Chem Int Ed, 2019, 58: 16082–16086

    Article  CAS  Google Scholar 

  42. Wang Q, Yang F, Zhang Y, Chen M, Zhang X, Lei S, Li R, Hu W. J Am Chem Soc, 2018, 140: 5339–5342

    Article  CAS  PubMed  Google Scholar 

  43. Anthony JE, Brooks JS, Eaton DL, Parkin SR. J Am Chem Soc, 2001, 123: 9482–9483

    Article  CAS  PubMed  Google Scholar 

  44. Sharifzadeh S, Wong CY, Wu H, Cotts BL, Kronik L, Ginsberg NS, Neaton JB. Adv Funct Mater, 2015, 25: 2038–2046

    Article  CAS  Google Scholar 

  45. Zhang Y, Zhu X, Yang S, Zhai F, Zhang F, Niu Z, Feng Y, Feng W, Zhang X, Li L, Li R, Hu W. Nanoscale, 2019, 11: 12781–12787

    Article  CAS  PubMed  Google Scholar 

  46. Zhu X, Zhang Y, Ren X, Yao J, Guo S, Zhang L, Wang D, Wang G, Zhang X, Li R, Hu W. Small, 2019, 15: 1902187

    Article  CAS  Google Scholar 

  47. Kim D, Lee D, Lee H, Lee W, Kim Y, Han J, Cho K. Adv Mater, 2007, 19: 678–682

    Article  CAS  Google Scholar 

  48. Bae I, Kang SJ, Shin YJ, Park YJ, Kim RH, Mathevet F, Park C. Adv Mater, 2011, 23: 3398–3402

    Article  CAS  PubMed  Google Scholar 

  49. Wang Y, Li Y, Zhu W, Liu J, Zhang X, Li R, Zhen Y, Dong H, Hu W. Nanoscale, 2016, 8: 14920–14924

    Article  CAS  PubMed  Google Scholar 

  50. Jiang L, Dong H, Meng Q, Li H, He M, Wei Z, He Y, Hu W. Adv Mater, 2011, 23: 2059–2063

    Article  CAS  PubMed  Google Scholar 

  51. Diao Y, Tee BCK, Giri G, Xu J, Kim DH, Becerril HA, Stoltenberg RM, Lee TH, Xue G, Mannsfeld SCB, Bao Z. Nat Mater, 2013, 12: 665–671

    Article  CAS  PubMed  Google Scholar 

  52. Dodabalapur A, Torsi L, Katz HE. Science, 1995, 268: 270–271

    Article  CAS  PubMed  Google Scholar 

  53. Dinelli F, Murgia M, Levy P, Cavallini M, Biscarini F, de Leeuw DM. Phys Rev Lett, 2004, 92: 116802

    Article  PubMed  CAS  Google Scholar 

  54. Horowitz G, Hajlaoui R, Bouchriha H, Bourguiga R, Hajlaoui M. Adv Mater, 1998, 10: 923–927

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51873148, 61674116, 51633006), the Ministry of Science and Technology of China (2016YFA0202302) and the Natural Science Foundation of Tianjin City (18JC-YBJC18400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongjin Li.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information for

11426_2020_9765_MOESM1_ESM.docx

Highly efficient modulation of the electronic properties of organic semiconductors by surface doping with 2D molecular crystals

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yang, S., Zhu, X. et al. Highly efficient modulation of the electronic properties of organic semiconductors by surface doping with 2D molecular crystals. Sci. China Chem. 63, 973–979 (2020). https://doi.org/10.1007/s11426-020-9765-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9765-8

Keywords

Navigation