Skip to main content
Log in

A fluorescent Eu(III) MOF for highly selective and sensitive sensing of picric acid

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A metal-organic framework [Eu3L3(CH3COO)2(H2O)23-OH)]•3DMF, (EuL, H2L=9H-carbazole-2,7-dicarboxylic acid, DMF=N,N-dimethylformamide) has been synthesized under solvothermal conditions and structurally characterized. In EuL, Eu6O8 clusters are four-bridged by carboxylates to form parallel-aligned Eu–O–C chains, which are further linked by the carbazole moieties of L2− ligands to form the three-dimensional framework with rhombic channels. The EuL material with characteristic emission of Eu3+ ion exhibits significant luminescence quenching response for picric acid (PA) and the linear Stern-Volmer plot was observed in the concentration range of 0.05–0.15 mM with Ksv of 98074 M−1. As far as we know, this Ksv is among the highest values for COFs and MOFs in detection of PA. The excellent anti-interference ability and repeatability were also verified by experiments. Lastly, we investigated the luminescence quenching mechanism in the EuL sensing system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Joarder B, Desai AV, Samanta P, Mukherjee S, Ghosh SK. Chem Eur J, 2015, 21: 965–969

    Article  CAS  PubMed  Google Scholar 

  2. (a) Nagarkar SS, Desai AV, Ghosh SK. Chem Commun, 2014, 50: 8915–8918

    Article  Google Scholar 

  3. Wang T, Jia Y, Chen Q, Feng R, Tian S, Hu TL, Bu XH. Sci China Chem, 2016, 59: 959–964

    Article  CAS  Google Scholar 

  4. Zhou X, Zhu Y, Li L, Yang T, Wang J, Huang W. Sci China Chem, 2017, 60: 1130–1135

    Article  CAS  Google Scholar 

  5. Zhou X, Chen Q, Li L, Yang T, Wang J, Huang W. Sci China Chem, 2017, 60: 115–121

    Article  CAS  Google Scholar 

  6. Li A, Li L, Lin Z, Song L, Wang ZH, Chen Q, Yang T, Zhou XH, Xiao HP, Yin XJ. New J Chem, 2015, 39: 2289–2295

    Article  CAS  Google Scholar 

  7. Cheng T, Hu J, Zhou C, Wang Y, Zhang M. Sci China Chem, 2016, 59: 929–947

    Article  CAS  Google Scholar 

  8. Nagarkar SS, Joarder B, Chaudhari AK, Mukherjee S, Ghosh SK. Angew Chem Int Ed, 2013, 52: 2881–2885

    Article  CAS  Google Scholar 

  9. Goel N, Kumar N. Inorg Chim Acta, 2017, 463: 14–19

    Article  CAS  Google Scholar 

  10. Xu Y, Li B, Li W, Zhao J, Sun S, Pang Y. Chem Commun, 2013, 49: 4764–4766

    Article  CAS  Google Scholar 

  11. Salinas Y, Martínez-Máñez R, Marcos MD, Sancenón F, Costero AM, Parra M, Gil S. Chem Soc Rev, 2012, 41: 1261–1296

    Article  CAS  PubMed  Google Scholar 

  12. Håkansson K, Coorey RV, Zubarev RA, Talrose VL, Håkansson P. J Mass Spectrom, 2000, 35: 337–346

    Article  PubMed  Google Scholar 

  13. Sylvia JM, Janni JA, Klein JD, Spencer KM. Anal Chem, 2000, 72: 5834–5840

    Article  CAS  PubMed  Google Scholar 

  14. Krausa M, Schorb K. J Electroanal Chem, 1999, 461: 10–13

    Article  CAS  Google Scholar 

  15. Toal SJ, Trogler WC. J Mater Chem, 2006, 16: 2871–2883

    Article  CAS  Google Scholar 

  16. Banerjee D, Hu Z, Li J. Dalton Trans, 2014, 43: 10668–10685

    Article  CAS  PubMed  Google Scholar 

  17. Xu X, Lu Y, Yang Y, Nosheen F, Wang X. Sci China Mater, 2015, 58: 370–377

    Article  CAS  Google Scholar 

  18. Zhao Y, Liu J, Horn M, Motta N, Hu M, Li Y. Sci China Mater, 2018, 61: 159–184

    Article  CAS  Google Scholar 

  19. Li XY, Li YZ, Yang Y, Hou L, Wang YY, Zhu Z. Chem Commun, 2017, 53: 12970–12973

    Article  CAS  Google Scholar 

  20. (a) Li YZ, Wang HH, Yang HY, Hou L, Wang YY, Zhu Z. Chem Eur J, 2018, 24: 865–871

    Article  CAS  PubMed  Google Scholar 

  21. Liu B, Ren C, Wang YY, Hou L, Liu RT, Shi QZ. Sci China Chem, 2012, 55: 341–346

    Article  CAS  Google Scholar 

  22. (a) Ullah L, Zhao G, Xu Z, He H, Usman M, Zhang S. Sci China Chem, 2018, 61: 402–411

    Article  CAS  Google Scholar 

  23. Farrusseng D, Aguado S, Pinel C. Angew Chem Int Ed, 2009, 48: 7502–7513

    Article  CAS  Google Scholar 

  24. (a) Zhu L, Liu XQ, Jiang HL, Sun LB. Chem Rev, 2017, 117: 8129–8176

    Article  CAS  PubMed  Google Scholar 

  25. (b) Zhai B, Xu H, Li ZY, Cao CS, Zhao B. Sci China Chem, 2017, 60: 1328–1333

    Article  CAS  Google Scholar 

  26. Yan W, Zhang C, Chen S, Han L, Zheng H. ACS Appl Mater Interfaces, 2017, 9: 1629–1634

    Article  CAS  PubMed  Google Scholar 

  27. Wu JX, Yan B. J Colloid Interface Sci, 2017, 504: 197–205

    Article  CAS  PubMed  Google Scholar 

  28. Zhou X, Cheng J, Li L, Chen Q, You Y, Xiao H, Huang W. Sci China Mater, 2018, 61: 752–757

    Article  CAS  Google Scholar 

  29. (a) Ning Y, Wang L, Yang GP, Wu Y, Bai N, Zhang W, Wang YY. Dalton Trans, 2016, 45: 12800–12806

    Article  CAS  PubMed  Google Scholar 

  30. Wu Y, Yang GP, Zhao Y, Wu WP, Liu B, Wang YY. Dalton Trans, 2015, 44: 3271–3277

    Article  CAS  PubMed  Google Scholar 

  31. Li L, Chen Q, Niu Z, Zhou X, Yang T, Huang W. J Mater Chem C, 2016, 4: 1900–1905

    Article  CAS  Google Scholar 

  32. Sun N, Yan B. Dalton Trans, 2017, 46: 875–881

    Article  CAS  PubMed  Google Scholar 

  33. Chen B, Wang L, Xiao Y, Fronczek FR, Xue M, Cui Y, Qian G. Angew Chem Int Ed, 2009, 48: 500–503

    Article  CAS  Google Scholar 

  34. (a) Zhu Y, Zhou X, Li L, You Y, Huang W. Sci China Chem, 2017, 60: 1581–1587

    Article  CAS  Google Scholar 

  35. Wu Y, Yang GP, Zhou X, Li J, Ning Y, Wang YY. Dalton Trans, 2015, 44: 10385–10391

    Article  CAS  PubMed  Google Scholar 

  36. Yao ZQ, Li GY, Xu J, Hu TL, Bu XH. Chem Eur J, 2018, 24: 3192–3198

    Article  CAS  PubMed  Google Scholar 

  37. Chen YQ, Li GR, Chang Z, Qu YK, Zhang YH, Bu XH. Chem Sci, 2013, 4: 3678–3682

    Article  CAS  Google Scholar 

  38. Zhou XH, Li L, Li HH, Li A, Yang T, Huang W. Dalton Trans, 2013, 42: 12403–12409

    Article  CAS  PubMed  Google Scholar 

  39. Zhou X, Li H, Xiao H, Li L, Zhao Q, Yang T, Zuo J, Huang W. Dalton Trans, 2013, 42: 5718–5723

    Article  CAS  PubMed  Google Scholar 

  40. Hu Z, Deibert BJ, Li J. Chem Soc Rev, 2014, 43: 5815–5840

    Article  CAS  PubMed  Google Scholar 

  41. Xu XY, Yan B. Dalton Trans, 2016, 45: 7078–7084

    Article  CAS  PubMed  Google Scholar 

  42. Xia TF, Cui YJ, Yang Y, Qian GD. ChemNanoMat, 2016, 3: 51–57

    Article  CAS  Google Scholar 

  43. Meng Q, Xin X, Zhang L, Dai F, Wang R, Sun D. J Mater Chem A, 2015, 3: 24016–24021

    Article  CAS  Google Scholar 

  44. Li L, Zhu Y, Zhou X, Brites CDS, Ananias D, Lin Z, Paz FAA, Rocha J, Huang W, Carlos LD. Adv Funct Mater, 2016, 26: 8677–8684

    Article  CAS  Google Scholar 

  45. Rao X, Song T, Gao J, Cui Y, Yang Y, Wu C, Chen B, Qian G. J Am Chem Soc, 2013, 135: 15559–15564

    Article  CAS  PubMed  Google Scholar 

  46. Zhang C, Yan Y, Pan Q, Sun L, He H, Liu Y, Liang Z, Li J. Dalton Trans, 2015, 44: 13340–13346

    Article  CAS  PubMed  Google Scholar 

  47. Hu Y, Ding M, Liu XQ, Sun LB, Jiang HL. Chem Commun, 2016, 52: 5734–5737

    Article  CAS  Google Scholar 

  48. Xiao JD, Qiu LG, Ke F, Yuan YP, Xu GS, Wang YM, Jiang X. J Mater Chem A, 2013, 1: 8745–8752

    Article  CAS  Google Scholar 

  49. Sanda S, Parshamoni S, Biswas S, Konar S. Chem Commun, 2015, 51: 6576–6579

    Article  CAS  Google Scholar 

  50. Zhang C, Sun L, Yan Y, Li J, Song X, Liu Y, Liang Z. Dalton Trans, 2015, 44: 230–236

    Article  CAS  PubMed  Google Scholar 

  51. Shi ZQ, Guo ZJ, Zheng HG. Chem Commun, 2015, 51: 8300–8303

    Article  CAS  Google Scholar 

  52. Yi XC, Xi FG, Wang K, Su Z, Gao EQ. J Solid State Chem, 2013, 206: 293–299

    Article  CAS  Google Scholar 

  53. Yi XC, Huang MX, Qi Y, Gao EQ. Dalton Trans, 2014, 43: 3691–3697

    Article  CAS  PubMed  Google Scholar 

  54. Das A, Biswas S. Sens Actuat B-Chem, 2017, 250: 121–131

    Article  CAS  Google Scholar 

  55. SAINT-Plus, version, 6.02. Madison: Bruker analytical X-ray System, 1999

    Google Scholar 

  56. Sheldrick GM. SADABS, An empirical absorption correction program. Madison: Bruker Analytical X-ray Systems, 1996

    Google Scholar 

  57. Sheldrick GM. A short history of SHELX. Acta Crystallogr, 2008, A64: 112–122

    Google Scholar 

  58. Spek AL. J Appl Crystlogr, 2003, 36: 7–13

    Article  CAS  Google Scholar 

  59. Lin G, Ding H, Yuan D, Wang B, Wang C. J Am Chem Soc, 2016, 138: 3302–3305

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61575096), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) (YX03001), Jiangsu Province Double Innovation Talent Program (090300014001), Nanjing University of Posts & Telecommunications (NY212004, NY217074), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX17_0748 and KYCX18_0857).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinhui Zhou or Wei Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Cheng, J., Wang, J. et al. A fluorescent Eu(III) MOF for highly selective and sensitive sensing of picric acid. Sci. China Chem. 62, 205–211 (2019). https://doi.org/10.1007/s11426-018-9367-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9367-y

Keywords

Navigation