Skip to main content
Log in

Surface etching induced ultrathin sandwich structure realizing enhanced photocatalytic activity

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Photocatalytic conversion efficiency is limited by serious charge carrier recombination. Efficient carrier separation is usually achieved by elegantly-designed multi-component structures connected by directional electric field. Herein, we developed a two-dimensional (2D) sandwich structure, as a new photocatalytic system, to realize high-efficiency carrier separation. This strategy integrated multifunction into a single structure for the first time, which successfully introduces a stable built-in electric field, realizing high-effective carrier separation. Besides, the carrier concentration is dramatically increased due to dimensional confinement. Benefiting from above synergic advantages, 2D sandwich photocatalyst achieves the highest nitrogen fixation rate (435 μmol g−1 h−1) in inorganic solid photocatalysts under visible light irradiation. We anticipate that 2D sandwich photocatalyst holds promises for the application and expansion of 2D materials in photocatalysis research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen X, Shen S, Guo L, Mao SS. Chem Rev, 2010, 110: 6503–6570

    Article  CAS  PubMed  Google Scholar 

  2. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM. Nature, 2008, 452: 301–310

    Article  CAS  PubMed  Google Scholar 

  3. Perutz RN, Procacci B. Chem Rev, 2016, 116: 8506–8544

    Article  CAS  PubMed  Google Scholar 

  4. Crabtree RH. Chem Rev, 2015, 115: 127–150

    Article  CAS  PubMed  Google Scholar 

  5. Tian J, Zhao Z, Kumar A, Boughton RI, Liu H. Chem Soc Rev, 2014, 43: 6920–6937

    Article  CAS  PubMed  Google Scholar 

  6. Bian Z, Tachikawa T, Zhang P, Fujitsuka M, Majima T. J Am Chem Soc, 2013, 136: 458–465

    Article  CAS  PubMed  Google Scholar 

  7. Maeda K, Ohno T, Domen K. Chem Sci, 2011, 2: 1362–1368

    Article  CAS  Google Scholar 

  8. Xie G, Zhang K, Guo B, Liu Q, Fang L, Gong JR. Adv Mater, 2013, 25: 3820–3839

    Article  CAS  PubMed  Google Scholar 

  9. Zhao C, Luo H, Chen F, Zhang P, Yi L, You K. Energy Environ Sci, 2014, 7: 1700–1707

    Article  CAS  Google Scholar 

  10. Tan C, Zhang H. J Am Chem Soc, 2015, 137: 12162–12174

    Article  CAS  PubMed  Google Scholar 

  11. Deng D, Novoselov KS, Fu Q, Zheng N, Tian Z, Bao X. Nat Nanotech, 2016, 11: 218–230

    Article  CAS  Google Scholar 

  12. Bi W, Li X, Zhang L, Jin T, Zhang L, Zhang Q, Luo Y, Wu C, Xie Y. Nat Commun, 2015, 6: 8647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang J, Shang Q, Huang Y, Tang F, Zhang Q, Liu Q, Jiang S, Hu F, Liu W, Luo Y, Yao T, Jiang Y, Pan Z, Sun Z, Wei S. Angew Chem, 2016, 128: 2177–2181

    Article  Google Scholar 

  14. Guan M, Xiao C, Zhang J, Fan S, An R, Cheng Q, Xie J, Zhou M, Ye B, Xie Y. J Am Chem Soc, 2013, 135: 10411–10417

    Article  CAS  PubMed  Google Scholar 

  15. Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz TF, Hone J, Wang ZL. Nature, 2014, 514: 470–474

    Article  CAS  PubMed  Google Scholar 

  16. Li H, Shang J, Ai Z, Zhang L. J Am Chem Soc, 2015, 137: 6393–6399

    Article  CAS  PubMed  Google Scholar 

  17. Ketterer J, Krämer V. Acta Crystlogr C Cryst Struct Commun, 1986, 42: 1098–1099

    Article  Google Scholar 

  18. Wu D, Ye L, Yue S, Wang B, Wang W, Yip HY, Wong PK. J Phys Chem C, 2016, 120: 7715–7727

    Article  CAS  Google Scholar 

  19. Yakovlev VV, Scarel G, Aita CR, Mochizuki S. Appl Phys Lett, 2000, 76: 1107–1109

    Article  CAS  Google Scholar 

  20. Zhang D, Li J, Wang Q, Wu Q. J Mater Chem A, 2013, 1: 8622–8629

    Article  CAS  Google Scholar 

  21. Gondal MA, Saleh TA, Drmosh Q. Sci Adv Mater, 2012, 4: 507–510

    Article  CAS  Google Scholar 

  22. Denisov VN, Ivlev AN, Lipin AS, Mavrin BN, Orlov VG. J Phys-Condens Matter, 1997, 9: 4967–4978

    Article  CAS  Google Scholar 

  23. Schalow T, Brandt B, Laurin M, Schauermann S, Guimond S, Kuhlenbeck H, Libuda J, Freund HJ. Surf Sci, 2006, 600: 2528–2542

    Article  CAS  Google Scholar 

  24. Electron Inelastic-mean-free-paths N. NIST Gaithersburg, MD, USA, 2000

  25. Li H, Wang D, Wang P, Fan H, Xie T. Chem Eur J, 2009, 15: 12521–12527

    Article  CAS  PubMed  Google Scholar 

  26. Ye L, Deng K, Xu F, Tian L, Peng T, Zan L. Phys Chem Chem Phys, 2012, 14: 82–85

    Article  CAS  PubMed  Google Scholar 

  27. Kong XY,Lee WPC, Ong WJ, Chai SP, Mohamed AR. Chem-CatChem, 2016, 8: 3074–3081

    CAS  Google Scholar 

  28. Sun S, An Q, Wang W, Zhang L, Liu J, Goddard III WA. J Mater Chem A, 2017, 5: 201–209

    Article  CAS  Google Scholar 

  29. Chen X, Liu L, Yu PY, Mao SS. Science, 2011, 331: 746–750

    Article  CAS  PubMed  Google Scholar 

  30. Chen J, Guan M, Cai W, Guo J, Xiao C, Zhang G. Phys Chem Chem Phys, 2014, 16: 20909–20914

    Article  CAS  PubMed  Google Scholar 

  31. Kronik L, Shapira Y. Surf Sci Rep, 1999, 37: 1–206

    Article  CAS  Google Scholar 

  32. Sun Y, Cheng H, Gao S, Sun Z, Liu Q, Liu Q, Lei F, Yao T, He J, Wei S, Xie Y. Angew Chem Int Ed, 2012, 51: 8727–8731

    Article  CAS  Google Scholar 

  33. Bai S, Yang L, Wang C, Lin Y, Lu J, Jiang J, Xiong Y. Angew Chem Int Ed, 2015, 54: 14810–14814

    Article  CAS  Google Scholar 

  34. Sun S, Li X, Wang W, Zhang L, Sun X. Appl Catal B-Environ, 2017, 200: 323–329

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2015CB932302), the National Natural Science Foundation of China (U1432133, 11321503, 21701164), the National Young Top-Notch Talent Support Program, the Chinese Academy of Sciences (XDB01020300), the Fok Ying-Tong Education Foundation (141042), the Fundamental Research Funds for the Central Universities (WK2060190027, WK2060190058). We would like to thank beamline BL14W1 (Shanghai Synchrotron Radiation Facility) and the Catalysis and Surface Science Endstation (National Synchrotron Radiation Laboratory) for providing the beam time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changzheng Wu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Bi, W., Wan, Y. et al. Surface etching induced ultrathin sandwich structure realizing enhanced photocatalytic activity. Sci. China Chem. 61, 1572–1580 (2018). https://doi.org/10.1007/s11426-018-9314-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9314-4

Keywords

Navigation