Skip to main content
Log in

In-situ TEM investigation of MoS2 upon alkali metal intercalation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Phase transition in two dimensional molybdenum disulfide (MoS2) can be induced by several methods and has been investigated for decades. Alkali metal insertion of MoS2 had been proved an effective method to cause phase transition early in 1970s, and has been gaining renewed interest recently, due to the possible application of MoS2 in energy storage. The alkali metal intercalation of MoS2 has been studied by various techniques, among which in-situ transmission electron microscopy (TEM) provides unique capability of real time resolving the structural evolution of the materials at high spatial resolutions. Here by in-situ TEM technique we investigated the structural evolution of MoS2 upon lithium and sodium intercalation, along with transformation of the nanosheet and variation of the electron diffraction patterns. The intercalation process is accompanied by emergence of superstructures, which exist in several forms. The ion intercalation results in phase transition of MoS2 from 2H to 1T, and the driving mechanism of the phase transition are discussed. The work provides a more comprehensive understanding of ion intercalation induced phase transition of MoS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Nat Nanotech, 2011, 6: 147–150

    Article  CAS  Google Scholar 

  2. Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Wang F. Nano Lett, 2010, 10: 1271–1275

    Article  CAS  PubMed  Google Scholar 

  3. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. J Am Chem Soc, 2011, 133: 7296–7299

    Article  CAS  PubMed  Google Scholar 

  4. Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I. Science, 2007, 317: 100–102

    Article  CAS  PubMed  Google Scholar 

  5. Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF. Nat Mater, 2012, 11: 963–969

    Article  CAS  PubMed  Google Scholar 

  6. Lembke D, Bertolazzi S, Kis A. Acc Chem Res, 2015, 48: 100–110

    Article  CAS  PubMed  Google Scholar 

  7. Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H. ACS Nano, 2012, 6: 74–80

    Article  PubMed  Google Scholar 

  8. Choi MS, Qu D, Lee D, Liu X, Watanabe K, Taniguchi T, Yoo WJ. ACS Nano, 2014, 8: 9332–9340

    Article  CAS  PubMed  Google Scholar 

  9. Hwang H, Kim H, Cho J. Nano Lett, 2011, 11: 4826–4830

    Article  CAS  PubMed  Google Scholar 

  10. Zhu C, Mu X, van Aken PA, Yu Y, Maier J. Angew Chem Int Ed, 2014, 53: 2152–2156

    Article  CAS  Google Scholar 

  11. Stephenson T, Li Z, Olsen B, Mitlin D. Energy Environ Sci, 2014, 7: 209–231

    Article  CAS  Google Scholar 

  12. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. Nat Nanotech, 2012, 7: 699–712

    Article  CAS  Google Scholar 

  13. Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H. Nat Chem, 2013, 5: 263–275

    Article  PubMed  Google Scholar 

  14. Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA, Gutiérrez HR, Heinz TF, Hong SS, Huang J, Ismach AF, Johnston-Halperin E, Kuno M, Plashnitsa VV, Robinson RD, Ruoff RS, Salahuddin S, Shan J, Shi L, Spencer MG, Terrones M, Windl W, Goldberger JE. ACS Nano, 2013, 7: 2898–2926

    Article  CAS  PubMed  Google Scholar 

  15. Xu M, Liang T, Shi M, Chen H. Chem Rev, 2013, 113: 3766–3798

    Article  CAS  PubMed  Google Scholar 

  16. Miró P, Audiffred M, Heine T. Chem Soc Rev, 2014, 43: 6537–6554

    Article  PubMed  Google Scholar 

  17. Dickinson RG, Pauling L. J Am Chem Soc, 1923, 45: 1466–1471

    Article  CAS  Google Scholar 

  18. Bell RE, Herfert RE. J Am Chem Soc, 1957, 79: 3351–3354

    Article  CAS  Google Scholar 

  19. Wypych F, Schollhorn R. J Chem Soc, Chem Commun, 1992: 1386–1388

    Google Scholar 

  20. Mattheiss LF. Phys Rev B, 1973, 8: 3719–3740

    Article  CAS  Google Scholar 

  21. Bissessur R, Kanatzidis MG, Schindler J, Kannewurf C. J Chem Soc, Chem Commun, 1993, 1582–1585

    Google Scholar 

  22. Py MA, Haering RR. Can J Phys, 1983, 61: 76–84

    Article  CAS  Google Scholar 

  23. Lin YC, Dumcenco DO, Huang YS, Suenaga K. Nat Nanotech, 2014, 9: 391–396

    Article  CAS  Google Scholar 

  24. Chi ZH, Zhao XM, Zhang H, Goncharov AF, Lobanov SS, Kagayama T, Sakata M, Chen XJ. Phys Rev Lett, 2014, 113: 036802

    Article  CAS  PubMed  Google Scholar 

  25. Enyashin AN, Yadgarov L, Houben L, Popov I, Weidenbach M, Tenne R, Bar-Sadan M, Seifert G. J Phys Chem C, 2011, 115: 24586–24591

    Article  CAS  Google Scholar 

  26. Loh TAJ, Chua DHC. J Phys Chem C, 2015, 119: 27496–27504

    Article  CAS  Google Scholar 

  27. Kang Y, Najmaei S, Liu Z, Bao Y, Wang Y, Zhu X, Halas NJ, Nordlander P, Ajayan PM, Lou J, Fang Z. Adv Mater, 2014, 26: 6467–6471

    Article  CAS  PubMed  Google Scholar 

  28. Radisavljevic B, Kis A. Nat Mater, 2013, 12: 815–820

    Article  CAS  PubMed  Google Scholar 

  29. Gao G, Jiao Y, Ma F, Jiao Y, Waclawik E, Du A. J Phys Chem C, 2015, 119: 13124–13128

    Article  CAS  Google Scholar 

  30. Wang H, Lu Z, Kong D, Sun J, Hymel TM, Cui Y. ACS Nano, 2014, 8: 4940–4947

    Article  CAS  PubMed  Google Scholar 

  31. Xiao J, Choi D, Cosimbescu L, Koech P, Liu J, Lemmon JP. Chem Mater, 2010, 22: 4522–4524

    Article  CAS  Google Scholar 

  32. Chang K, Chen W. ACS Nano, 2011, 5: 4720–4728

    Article  CAS  PubMed  Google Scholar 

  33. Xiong F, Cai Z, Qu L, Zhang P, Yuan Z, Asare OK, Xu W, Lin C, Mai L. ACS Appl Mater Interfaces, 2015, 7: 12625–12630

    Article  CAS  PubMed  Google Scholar 

  34. Zhou X, Wan LJ, Guo YG. Chem Commun, 2013, 49: 1838–1840

    Article  CAS  Google Scholar 

  35. Zhou X, Wan LJ, Guo YG. Nanoscale, 2012, 4: 5868–5871

    Article  CAS  PubMed  Google Scholar 

  36. David L, Bhandavat R, Singh G. ACS Nano, 2014, 8: 1759–1770

    Article  CAS  PubMed  Google Scholar 

  37. Hu Z, Wang L, Zhang K, Wang J, Cheng F, Tao Z, Chen J. Angew Chem, 2014, 126: 13008–13012

    Article  Google Scholar 

  38. Sahu TS, Mitra S. Sci Rep, 2015, 5: 12571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bang GS, Nam KW, Kim JY, Shin J, Choi JW, Choi SY. ACS Appl Mater Interfaces, 2014, 6: 7084–7089

    Article  CAS  PubMed  Google Scholar 

  40. Huang L, Wei Q, Xu X, Shi C, Liu X, Zhou L, Mai L. Phys Chem Chem Phys, 2017, 19: 13696–13702

    Article  CAS  PubMed  Google Scholar 

  41. Somoano RB, Hadek V, Rembaum A. J Chem Phys, 1973, 58: 697–701

    Article  CAS  Google Scholar 

  42. Benavente E. Coord Chem Rev, 2002, 224: 87–109

    Article  CAS  Google Scholar 

  43. Gamble FR, Disalvo FJ, Klemm RA, Geballe TH. Science, 1970, 168: 568–570

    Article  CAS  PubMed  Google Scholar 

  44. Gamble FR, Osiecki JH, DiSalvo FJ. J Chem Phys, 1971, 55: 3525–3530

    Article  CAS  Google Scholar 

  45. Chrissafis K, Zamani M, Kambas K, Stoemenos J, Economou NA, Samaras I, Julien C. Mater Sci Eng-B, 1989, 3: 145–151

    Article  Google Scholar 

  46. Mulhern PJ. Can J Phys, 1989, 67: 1049–1052

    Article  CAS  Google Scholar 

  47. Imanishi N, Toyoda M, Takeda Y, Yamamoto O. Solid State Ion, 1992, 58: 333–338

    Article  CAS  Google Scholar 

  48. Heising J, Kanatzidis MG. J Am Chem Soc, 1999, 121: 638–643

    Article  CAS  Google Scholar 

  49. Wypych F, Solenthaler C, Prins R, Weber T. J Solid State Chem, 1999, 144: 430–436

    Article  CAS  Google Scholar 

  50. Wypych F, Weber T, Prins R. Chem Mater, 1998, 10: 723–727

    Article  CAS  Google Scholar 

  51. Wei JK, Xu Z, Wang H, Wang WL, Bai XD. Sci China Tech Sci, 2016, 59: 1080–1084

    Article  CAS  Google Scholar 

  52. Wang LF, Xu Z, Yang SZ, Tian XZ, Wei JK, Wang WL, Bai XD. Sci China Tech Sci, 2013, 56: 2630–2635

    Article  CAS  Google Scholar 

  53. Wang L, Liu D, Yang S, Tian X, Zhang G, Wang W, Wang E, Xu Z, Bai X. ACS Nano, 2014, 8: 8249–8254

    Article  CAS  PubMed  Google Scholar 

  54. Rocquefelte X, Boucher F, Gressier P, Ouvrard G, Blaha P, Schwarz K. Phys Rev B, 2000, 62: 2397–2400

    Article  CAS  Google Scholar 

  55. Xiong F, Wang H, Liu X, Sun J, Brongersma M, Pop E, Cui Y. Nano Lett, 2015, 15: 6777–6784

    Article  CAS  PubMed  Google Scholar 

  56. Shannon RD. Acta Cryst A, 1976, 32: 751–767

    Article  Google Scholar 

  57. Gao P, Wang L, Zhang Y, Huang Y, Liu K. ACS Nano, 2015, 9: 11296–11301

    Article  CAS  PubMed  Google Scholar 

  58. Huang Q, Li X, Sun M, Zhang L, Song C, Zhu L, Chen P, Xu Z, Wang W, Bai X. Adv Mater Interfaces, 2017, 4: 1700171

    Article  CAS  Google Scholar 

  59. Wang X, Shen X, Wang Z, Yu R, Chen L. ACS Nano, 2014, 8: 11394–11400

    Article  CAS  PubMed  Google Scholar 

  60. Wang L, Xu Z, Wang W, Bai X. J Am Chem Soc, 2014, 136: 6693–6697

    Article  CAS  PubMed  Google Scholar 

  61. Li Y, Wu D, Zhou Z, Cabrera CR, Chen Z. J Phys Chem Lett, 2012, 3: 2221–2227

    Article  CAS  PubMed  Google Scholar 

  62. Su J, Pei Y, Yang Z, Wang X. RSC Adv, 2014, 4: 43183–43188

    Article  CAS  Google Scholar 

  63. Hibma T. Physica B+C, 1980, 99: 136–140

    Article  CAS  Google Scholar 

  64. Alexiev V, Prins R, Weber T. Phys Chem Chem Phys, 2000, 2: 1815–1827

    Article  CAS  Google Scholar 

  65. Kan M, Wang JY, Li XW, Zhang SH, Li YW, Kawazoe Y, Sun Q, Jena P. J Phys Chem C, 2014, 118: 1515–1522

    Article  CAS  Google Scholar 

  66. Mortazavi M, Wang C, Deng J, Shenoy VB, Medhekar NV. J Power Sources, 2014, 268: 279–286

    Article  CAS  Google Scholar 

  67. Nasr Esfahani D, Leenaerts O, Sahin H, Partoens B, Peeters FM. J Phys Chem C, 2015, 119: 10602–10609

    Article  CAS  Google Scholar 

  68. Sun X, Wang Z, Li Z, Fu YQ. Sci Rep, 2016, 6: 26666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zheng Y, Huang Y, Shu H, Zhou X, Ding J, Chen X, Lu W. Phys Lett A, 2016, 380: 1767–1771

    Article  CAS  Google Scholar 

  70. Pandey M, Bothra P, Pati SK. J Phys Chem C, 2016, 120: 3776–3780

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program from Chinese Academy of Sciences (ZDYZ2015-1, XDB07030100) and the National Natural Science Foundation of China (11474337, 51421002, 51172273, 221322304, 11290161).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenlong Wang or Xuedong Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Wang, L., Xu, Z. et al. In-situ TEM investigation of MoS2 upon alkali metal intercalation. Sci. China Chem. 61, 222–227 (2018). https://doi.org/10.1007/s11426-017-9128-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9128-0

Keywords

Navigation