Skip to main content
Log in

Air-promoted selective hydrogenation of phenol to cyclohexanone at low temperature over Pd-based nanocatalysts

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Attaining high activity with high selectivity at low temperature is challenging in the selective hydrogenation of phenol to cyclohexanone due to its high activation energy (Ea, 55–70 kJ/mol). Here we report a simple and efficient strategy for phenol hydrogenation catalyzed by Pd in aqueous phase at 30 °C by introducing air to promote the catalysis. With the assistance of air, >99% conversion and >99% selectivity were achieved over Pd(111)/Al2O3 with an overall turnover frequency (TOF) of 621 h−1, ~80 times greater than that of the state-of-art Pd catalyst at 30 °C. Mechanism studies revealed that phenol was activated to generate phenoxyl radicals. The radicals were yielded from the reaction between phenol and hydroxyl radicals in the presence of hydrogen, oxygen and protic solvent on Pd. The phenoxyl pathway resulted in a low apparent Ea (8.2 kJ/mol) and thus high activity. More importantly, this strategy of activating substrate by air can be adapted to other Pd based catalysts, offering a new thinking for the rational design of cyclohexanone production in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Claus P, Berndt H, Mohr C, Radnik J, Shin EJ, Keane MA. J Catal, 2000, 192: 88–97

    Article  CAS  Google Scholar 

  2. Mahata N, Vishwanathan V. J Catal, 2000, 196: 262–270

    Article  CAS  Google Scholar 

  3. Liu H, Jiang T, Han B, Liang S, Zhou Y. Science, 2009, 326: 1250–1252

    Article  CAS  Google Scholar 

  4. Wang Y, Yao J, Li H, Su D, Antonietti M. J Am Chem Soc, 2011, 133: 2362–2365

    Article  CAS  Google Scholar 

  5. Li Z, Liu J, Xia C, Li F. ACS Catal, 2013, 3: 2440–2448

    Article  CAS  Google Scholar 

  6. Wei Y, Rao B, Cong X, Zeng X. J Am Chem Soc, 2015, 137: 9250–9253

    Article  CAS  Google Scholar 

  7. Nie R, Miao M, Du W, Shi J, Liu Y, Hou Z. Appl Catal B-Environ, 2016, 180: 607–613

    Article  CAS  Google Scholar 

  8. Dodgson I, Pignataro F, Barberis G, Griffin K, Tauszik G. Chem Ind, 1989, 3: 830

    Google Scholar 

  9. Wang Y, Zhang J, Wang X, Antonietti M, Li H. Angew Chim Int Ed, 2010, 49: 3356–3359

    Article  CAS  Google Scholar 

  10. Yu H, Peng F, Tan J, Hu X, Wang H, Yang J, Zheng W. Angew Chem Int Ed, 2011, 50: 3978–3982

    Article  CAS  Google Scholar 

  11. Li H, Liu J, Xie S, Qiao M, Dai W, Lu Y, Li H. Adv Funct Mater, 2008, 18: 3235–3241

    Article  CAS  Google Scholar 

  12. Makowski P, Demir Cakan R, Antonietti M, Goettmann F, Titirici MM. Chem Commun, 2008, 49: 999

    Article  Google Scholar 

  13. Chatterjee M, Kawanami H, Sato M, Chatterjee A, Yokoyama T, Suzuki T. Adv Synth Catal, 2009, 351: 1912–1924

    Article  CAS  Google Scholar 

  14. Liu H, Li Y, Luque R, Jiang H. Adv Synth Catal, 2011, 353: 3107–3113

    Article  CAS  Google Scholar 

  15. Li Y, Xu X, Zhang P, Gong Y, Li H, Wang Y. RSC Adv, 2013, 3: 10973

    Article  CAS  Google Scholar 

  16. Zhu JF, Tao GH, Liu HY, He L, Sun QH, Liu HC. Green Chem, 2014, 16: 2664–2669

    Article  CAS  Google Scholar 

  17. Xu G, Guo J, Zhang Y, Fu Y, Chen J, Ma L, Guo Q. ChemCatChem, 2015, 7: 2485–2492

    Article  CAS  Google Scholar 

  18. Mahata N, Raghavan KV, Vishwanathan V, Park C, Keane MA. Phys Chem Chem Phys, 2001, 3: 2712–2719

    Article  CAS  Google Scholar 

  19. Scirè S, Minicò S, Crisafulli C. Appl Catal A-Gen, 2002, 235: 21–31

    Article  Google Scholar 

  20. Velu S, Kapoor MP, Inagaki S, Suzuki K. Appl Catal A-Gen, 2003, 245: 317–331

    Article  CAS  Google Scholar 

  21. Chary KVR, Naresh D, Vishwanathan V, Sadakane M, Ueda W. Catal Commun, 2007, 8: 471–477

    Article  CAS  Google Scholar 

  22. Chen A, Zhao G, Chen J, Chen L, Yu Y. RSC Adv, 2013, 3: 4171–4175

    Article  CAS  Google Scholar 

  23. Usman M, Li D, Li CS, Zhang SJ. Sci China Chem, 2015, 58: 738–746

    Article  CAS  Google Scholar 

  24. Wu T, Zhang P, Jiang T, Yang D, Han B. Sci China Chem, 2015, 58: 93–100

    Article  CAS  Google Scholar 

  25. Nelson NC, Manzano JS, Sadow AD, Overbury SH, Slowing II. ACS Catal, 2015, 5: 2051–2061

    Article  CAS  Google Scholar 

  26. Lin CJ, Huang SH, Lai NC, Yang CM. ACS Catal, 2015, 5: 4121–4129

    Article  CAS  Google Scholar 

  27. Xiang J, Chong H, Tang J, Feng L, Zhou B, Fu F, Wang X, Li P, Zhu M. Sci China Chem, 2015, 58: 467–472

    Article  CAS  Google Scholar 

  28. Gonzalez-Velasco JR, Gonzalez-Marcos MP, Arnaiz S, Gutierrez-Ortiz JI, Gutierrez-Ortiz MA. Ind Eng Chem Res, 1995, 34: 1031–1036

    Article  CAS  Google Scholar 

  29. Mahata N, Vishwanathan V. J Mol Catal A: Chem, 1997, 20: 267

    Article  Google Scholar 

  30. Li H, Chen G, Yang H, Wang X, Liang J, Liu P, Chen M, Zheng N. Angew Chem Int Ed, 2013, 52: 8368–8372

    Article  CAS  Google Scholar 

  31. Schalow T, Brandt B, Starr DE, Laurin M, Shaikhutdinov SK, Schauermann S, Libuda J, Freund HJ. Angew Chem Int Ed, 2006, 45: 3693–3697

    Article  CAS  Google Scholar 

  32. Niwa Si S, Eswaramoorthy M, Nair J, Raj A, Itoh N, Shoji H, Namba T, Mizukami F. Science, 2002, 295: 105–107

    Article  Google Scholar 

  33. Li J, Staykov A, Ishihara T, Yoshizawa K. J Phys Chem C, 2011, 115: 7392–7398

    Article  CAS  Google Scholar 

  34. Ishibashi K, Fujishima A, Watanabe T, Hashimoto K. ElectroChem Commun, 2000, 2: 207–210

    Article  CAS  Google Scholar 

  35. Häusser A, Trautmann M, Roduner E. Chem Commun, 2011, 47: 6954–6956

    Article  Google Scholar 

  36. Pinteala M, Schlick S. Polym Degrad Stab, 2009, 94: 1779–1787

    Article  CAS  Google Scholar 

  37. Kromer A, Roduner E. ChemPlusChem, 2013, 78: 268–273

    Article  CAS  Google Scholar 

  38. Steenken S. J Chem Soc Faraday Trans 1, 1987, 83: 113

    Article  CAS  Google Scholar 

  39. Stone TJ, Waters WA. J Chem Soc, 1964, 1: 213

    Article  Google Scholar 

  40. Gopalan S, Savage PE. J Phys Chem, 1994, 98: 12646–12652

    Article  CAS  Google Scholar 

  41. Asatryan R, Davtyan A, Khachatryan L, Dellinger B. J Phys Chem A, 2005, 109: 11198–11205

    Article  CAS  Google Scholar 

  42. Li G, Han J, Wang H, Zhu X, Ge Q. ACS Catal, 2015, 5: 2009–2016

    Article  CAS  Google Scholar 

  43. Wilson NM, Flaherty DW. J Am Chem Soc, 2016, 138: 574–586

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology of China (2017YFA0207302, 2015CB93230) and the National Natural Science Foundation of China (21420102001, 21333008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Binghui Wu or Nanfeng Zheng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Mo, S., Liu, P. et al. Air-promoted selective hydrogenation of phenol to cyclohexanone at low temperature over Pd-based nanocatalysts. Sci. China Chem. 60, 1444–1449 (2017). https://doi.org/10.1007/s11426-017-9095-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9095-4

Keywords

Navigation