Skip to main content
Log in

Synergistic effect of TiO2 hierarchical submicrospheres for high performance dye-sensitized solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The performance of dye-sensitized solar cells (DSCs) could be improved by using rationally designed mesoporous film structure for electron collection, dye adsorption and light scattering. The development of a novel double layer film prepared by TiO2 hierarchical submicrospheres and nanoparticles was reported in this article. The submicrospheres were composed of rutile nanorods of 10 nm diameter and the length of 150–250 nm, which facilitated fast electron transport, charge collection and light scattering. Using a double layer structure consisting of the 10 wt% film as a dye loading layer and the 50 wt% film as the light scattering layer, C101 sensitizer and liquid electrolyte, DSC yielded power conversion efficiency of 9.68% under 1 sun illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grätzel M. Nature, 1991, 353: 737–740

    Article  Google Scholar 

  2. Kuang D, Ito S, Wenger B, Klein C, Moser JE, Humphry-Baker R, Zakeeruddin SM, Grätzel M. J Am Chem Soc, 2006, 128: 4146–4154

    Article  CAS  Google Scholar 

  3. Zukalová M, Zukal A, Kavan L, Nazeeruddin MK, Liska P, Grätzel M. Nano Lett, 2005, 5: 1789–1792

    Article  Google Scholar 

  4. Kusama H, Arakawa H. Sol Energy Mater Sol Cells, 2005, 85: 333–344

    Article  CAS  Google Scholar 

  5. Shi C, Dai S, Wang K, Pan X, Guo L, Zeng L, Hu L, Kong F. Sol Energy Mater Sol Cells, 2005, 86: 527–535

    Article  CAS  Google Scholar 

  6. Sommeling PM, O’Regan BC, Haswell RR, Smit HJP, Bakker NJ, Smits JJT, Kroon JM, van Roosmalen JAM. J Phys Chem B, 2006, 110: 19191–19197

    Article  CAS  Google Scholar 

  7. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA. Nano Lett, 2006, 6: 215–218

    Article  CAS  Google Scholar 

  8. Chen D, Huang F, Cheng YB, Caruso RA. Adv Mater, 2009, 21: 2206–2210

    Article  CAS  Google Scholar 

  9. Yella A, Lee HW, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EWG, Yeh CY, Zakeeruddin SM, Grätzel M. Science, 2011, 334: 629–634

    Article  CAS  Google Scholar 

  10. Hu L, Dai S, Weng J, Xiao S, Sui Y, Huang Y, Chen S, Kong F, Pan X, Liang L, Wang K. J Phys Chem B, 2007, 111: 358–362

    Article  CAS  Google Scholar 

  11. Stergiopoulos T, Ghicov A, Likodimos V, Tsoukleris DS, Kunze J, Schmuki P, Falaras P. Nanotechnology, 2008, 19: 7–12

    Article  Google Scholar 

  12. Tan B, Wu Y. J Phys Chem B, 2006, 110: 15932–15938

    Article  CAS  Google Scholar 

  13. Umeyama T, Imahori H. Energy Environ Sci, 2008, 1: 120–133

    Article  CAS  Google Scholar 

  14. Palomares E, Clifford JN, Haque SA, Lutz T, Durrant JR. J Am Chem Soc, 2003, 125: 475–482

    Article  CAS  Google Scholar 

  15. Yang L, Lin Y, Jia J, Xiao X, Li X, Zhou X. J Power Sources, 2008, 182: 370–376

    Article  CAS  Google Scholar 

  16. Chang YJ, Kong EH, Park YC, Jang HM. J Mater Chem A, 2013, 1: 9707–9713

    Article  CAS  Google Scholar 

  17. Chen HY, Kuang DB, Su CY. J Mater Chem, 2012, 22: 15475–15489

    Article  CAS  Google Scholar 

  18. Liao JY, Lei BX, Kuang DB, Su CY. Energy Environ Sci, 2011, 4: 4079–4085

    Article  CAS  Google Scholar 

  19. Li ZQ, Que YP, Mo LE, Chen WC, Ding Y, Ma YM, Jiang L, Hu LH, Dai SY. ACS Appl Mater Interfaces, 2015, 7: 10928–10934

    Article  CAS  Google Scholar 

  20. Ding Y, Sheng J, Yang Z, Jiang L, Mo Le, Hu L, Que Y, Dai S. ChemSusChem, 2016, 9: 720–727

    Article  CAS  Google Scholar 

  21. Zi W, Ren X, Xiao F, Wang H, Gao F, Liu SF. Sol Energy Mater Sol Cells, 2016, 144: 63–67

    Article  CAS  Google Scholar 

  22. Rui Y, Li Y, Zhang Q, Wang H. CrystEngComm, 2013, 15: 1651–1656

    Article  CAS  Google Scholar 

  23. Wu WQ, Xu YF, Rao HS, Su CY, Kuang DB. Nanoscale, 2013, 5: 4362–4369

    Article  CAS  Google Scholar 

  24. Sheng J, Hu L, Li W, Mo L, Tian H, Dai S. Sol Energy, 2011, 85: 2697–2703

    Article  CAS  Google Scholar 

  25. Li Y, Liu J, Jia Z. Mater Lett, 2006, 60: 1753–1757

    Article  CAS  Google Scholar 

  26. Pan X, Dai SY, Wang KJ, Hu LH, Shi CW, Guo L, Kong FT. Chin J Chem, 2005, 23: 1579–1583

    Article  CAS  Google Scholar 

  27. Himpsel FJ, Knapp JA, Eastman DE. Phys Rev B, 1979, 19: 2919–2927

    Article  CAS  Google Scholar 

  28. Sheng J, Hu LH, Mo LE, Li WX, Tian HJ, Dai SY. Sci China Chem, 2012, 55: 368–372

    Article  CAS  Google Scholar 

  29. Pérez León C, Kador L, Peng B, Thelakkat M. J Phys Chem B, 2006, 110: 8723–8730

    Article  Google Scholar 

  30. Sheng J, Hu L, Xu S, Liu W, Mo Le, Tian H, Dai S. J Mater Chem, 2011, 21: 5457–5463

    Article  CAS  Google Scholar 

  31. Svensson PH, Kloo L. Chem Rev, 2003, 103: 1649–1684

    Article  CAS  Google Scholar 

  32. Cass MJ, Walker AB, Martinez D, Peter LM. J Phys Chem B, 2005, 109: 5100–5107

    Article  CAS  Google Scholar 

  33. Jiu J, Isoda S, Wang F, Adachi M. J Phys Chem B, 2006, 110: 2087–2092

    Article  CAS  Google Scholar 

  34. Tétreault N, Horváth E, Moehl T, Brillet J, Smajda R, Bungener S, Cai N, Wang P, Zakeeruddin SM, Forró; L, Magrez A, Grätzel M. ACS Nano, 2010, 4: 7644–7650

    Article  Google Scholar 

  35. Grandidier J, Callahan DM, Munday JN, Atwater HA. Adv Mater, 2011, 23: 1272–1276

    Article  CAS  Google Scholar 

  36. Enache-Pommer E, Liu B, Aydil ES. Phys Chem Chem Phys, 2009, 11: 9648–9652

    Article  CAS  Google Scholar 

  37. Doganov RA, O’Farrell ECT, Koenig SP, Yeo Y, Ziletti A, Carvalho A, Campbell DK, Coker DF, Watanabe K, Taniguchi T, Neto AHC, Özyilmaz B. Nat Commun, 2015, 6: 6647

    Article  CAS  Google Scholar 

  38. O’Regan BC, Durrant JR, Sommeling PM, Bakker NJ. J Phys Chem C, 2007, 111: 14001–14010

    Article  Google Scholar 

  39. Sauvage F, Chen D, Comte P, Huang F, Heiniger LP, Cheng YB, Caruso RA, Graetzel M. ACS Nano, 2010, 4: 4420–4425

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the External Cooperation Program of BIC, Chinese Academy of Sciences (GJHZ1607), the National Natural Science Foundation of China (51572080, 21403262), Zhejiang Provincial Natural Science Foundation of China (LR16F040002) and International S&T Cooperation Program of Ningbo (2015D10021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jichun Ye or Songyuan Dai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, J., Hu, L., Mo, L. et al. Synergistic effect of TiO2 hierarchical submicrospheres for high performance dye-sensitized solar cells. Sci. China Chem. 60, 822–828 (2017). https://doi.org/10.1007/s11426-016-0428-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0428-3

Keywords

Navigation