Skip to main content
Log in

An energy decomposition analysis for intramolecular non-covalent interaction in solvated environment

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this work, the intra-EDA method, which is a recently developed energy decomposition analysis scheme for intramolecular non-covalent interaction is extended from gas phase to solvated environment. It is the first analysis scheme that performs analysis for intramolecular interaction in solution. By fragmentation scheme, a molecule is divided into intramolecular interacting fragments and environmental fragments via single bond homolysis breaking. The solvent effect is taken into account by implicit solvation model. Intramolecular interaction free energy is estimated as the separated treatment of inter-fragment interactions in dielectric environment. The analysis results highlight the importance of solvent effects to intramolecular non-covalent interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kitaura K, Morokuma K. Int J Quantum Chem, 1976, 10: 325–340

    Article  CAS  Google Scholar 

  2. Morokuma K. Acc Chem Res, 1977, 10: 294–300

    Article  CAS  Google Scholar 

  3. Chen W, Gordon MS. J Phys Chem, 1996, 100: 14316–14328

    Article  CAS  Google Scholar 

  4. Bagus PS, Hermann K, Bauschlicher CW. J Chem Phys, 1984, 80: 4378–4386

    Article  CAS  Google Scholar 

  5. Mitoraj MP, Michalak A, Ziegler T. J Chem Theor Comput, 2009, 5: 962–975

    Article  CAS  Google Scholar 

  6. Ziegler T, Rauk A. Theoret Chim Acta, 1977, 46: 1–10

    Article  CAS  Google Scholar 

  7. Reed AE, Weinhold F. J Chem Phys, 1983, 78: 4066–4073

    Article  CAS  Google Scholar 

  8. Reed AE, Curtiss LA, Weinhold F. Chem Rev, 1988, 88: 899–926

    Article  CAS  Google Scholar 

  9. Wu Q, Ayers PW, Zhang Y. J Chem Phys, 2009, 131: 164112

    Article  Google Scholar 

  10. Mo Y, Gao J, Peyerimhoff SD. J Chem Phys, 2000, 112: 5530–5538

    Article  CAS  Google Scholar 

  11. Khaliullin RZ, Cobar EA, Lochan RC, Bell AT, Head-Gordon M. J Phys Chem A, 2007, 111: 8753–8765

    Article  CAS  Google Scholar 

  12. Fedorov DG, Kitaura K. J Comput Chem, 2007, 28: 222–237

    Article  CAS  Google Scholar 

  13. Su P, Li H. J Chem Phys, 2009, 131: 014102

    Article  Google Scholar 

  14. Su P, Liu H, Wu W. J Chem Phys, 2012, 137: 034111

    Article  Google Scholar 

  15. Su P, Jiang Z, Chen Z, Wu W. J Phys Chem A, 2014, 118: 2531–2542

    Article  CAS  Google Scholar 

  16. Rybak S, Jeziorski B, Szalewicz K. J Chem Phys, 1991, 95: 6576

    Article  CAS  Google Scholar 

  17. Jeziorski B, Moszynski R, Szalewicz K. Chem Rev, 1994, 94: 1887–1930

    Article  CAS  Google Scholar 

  18. Stone A. The Theory of Intermolecular Forces. New York: Oxford University Press, 2013

    Book  Google Scholar 

  19. Hayes IC, Stone AJ. Mol Phys, 2006, 53: 83–105

    Article  Google Scholar 

  20. Mayer I. Int J Quantum Chem, 1983, 23: 341–363

    Article  CAS  Google Scholar 

  21. Mayer I. Phys Chem Chem Phys, 2006, 8: 4630–4646

    Article  CAS  Google Scholar 

  22. Mayer I. Phys Chem Chem Phys, 2012, 14: 337–344

    Article  CAS  Google Scholar 

  23. Gonthier JF, Corminboeuf C. CHIMIA, 2014, 68: 221–226

    Article  CAS  Google Scholar 

  24. Gonthier JF, Corminboeuf C. J Chem Phys, 2014, 140: 154107

    Article  Google Scholar 

  25. Su P, Chen Z, Wu W. Chem Phys Lett, 2015, 635: 250–256

    Article  CAS  Google Scholar 

  26. Mennucci B. WIREs Comput Mol Sci, 2012, 2: 386–404

    Article  CAS  Google Scholar 

  27. Tomasi J, Mennucci B, Cammi R. Chem Rev, 2005, 105: 2999–3094

    Article  CAS  Google Scholar 

  28. Seidl A, Görling A, Vogl P, Majewski JA, Levy M. Phys Rev B, 1996, 53: 3764–3774

    Article  CAS  Google Scholar 

  29. Miertuš S, Scrocco E, Tomasi J. Chem Phys, 1981, 55: 117–129

    Article  Google Scholar 

  30. Cancès E, Mennucci B. J Chem Phys, 1998, 109:249

    Article  Google Scholar 

  31. Barone V, Cossi M. J Phys Chem A, 1998, 102: 1995–2001

    Article  CAS  Google Scholar 

  32. Baer R, Livshits E, Salzner U. Annu Rev Phys Chem, 2010, 61: 85–109

    Article  CAS  Google Scholar 

  33. Grimme S, Antony J, Ehrlich S, Krieg H. J Chem Phys, 2010, 132: 154104

    Article  Google Scholar 

  34. Su P, Li H. J Chem Phys, 2009, 130: 074109

    Article  Google Scholar 

  35. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA. J Comput Chem, 1993, 14: 1347–1363

    Article  CAS  Google Scholar 

  36. Barone V, Cossi M, Tomasi J. J Chem Phys, 1997, 107: 3210–3221

    Article  CAS  Google Scholar 

  37. Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM. J Am Chem Soc, 1992, 114: 10024–10035

    Article  CAS  Google Scholar 

  38. Chai JD, Head-Gordon M. Phys Chem Chem Phys, 2008, 10: 6615–6620

    Article  CAS  Google Scholar 

  39. Gilli G, Bellucci F, Ferretti V, Bertolasi V. J Am Chem Soc, 1989, 111: 1023–1028

    Article  CAS  Google Scholar 

  40. Gilli P, Bertolasi V, Ferretti V, Gilli G. J Am Chem Soc, 1994, 116: 909–915

    Article  CAS  Google Scholar 

  41. Boys SF, Bernardi F. Mol Phys, 2006, 19: 553–566

    Article  Google Scholar 

  42. Casanova D. Int J Quantum Chem, 2015, 115: 442–452

    Article  CAS  Google Scholar 

  43. Shimizu A, Mori T, Inoue Y, Yamada S. J Phys Chem A, 2009, 113: 8754–8764

    Article  CAS  Google Scholar 

  44. Armstrong FA, Allen H, Hill O, Oliver BN, Whitford D. J Am Chem Soc, 1985, 107: 1473–1476

    Article  CAS  Google Scholar 

  45. Di bilio AJ, Dennison C, Gray HB, Ramirez BE, Sykes AG, Winkler JR. J Am Chem Soc, 1998, 120: 7551–7556

    Article  Google Scholar 

  46. Su P, Li H. Inorg Chem, 2010, 49: 435–444

    Article  CAS  Google Scholar 

  47. Romero A, Nar H, Huber R, Messerschmidt A, Kalverda AP, Canters GW, Durley R, Scott Mathews F. J Mol Biol, 1994, 236: 1196–1211

    Article  CAS  Google Scholar 

  48. Rosen D. Trans Faraday Soc, 1963, 59: 2178–2191

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peifeng Su.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, P., Chen, H. & Wu, W. An energy decomposition analysis for intramolecular non-covalent interaction in solvated environment. Sci. China Chem. 59, 1025–1032 (2016). https://doi.org/10.1007/s11426-016-0007-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0007-2

Keywords

Navigation