Skip to main content
Log in

Organic nanoparticles formed by aggregation-induced fluorescent molecules for detection of hydrogen sulfide in living cells

  • Articles
  • SPECIAL TOPIC · Fluorescent Chemical/Biological Sensors and Imaging
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Hydrogen sulfide (H2S) has been found to be the third most important endogenous gaseous signaling molecule after nitric oxide (NO) and carbonic oxide (CO) and plays crucial roles in living organisms and biological systems. Here we use aggregation- induced emission (AIE) of a small organic molecule (TPE-indo) to detect H2S in both solution and living cells. TPE-indo can target mitochondria and aggregate to fluoresce, which can serve as a sensor for monitoring H2S in the mitochondria. We regulate the fluorescence of AIE molecules by tuning the viscosity of the solution to form TPE-indo nanoparticles, constructing a probe for H2S with good selectivity and high sensitivity. The nucleophilic addition of HS- to the TPE-indo is crucial for the rapid H2S detection. The imaging and analysis of H2S in mitochondria of living cells with the probe demonstrate potential biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li L, Moore P. Biochem Soc T, 2007, 35: 1138–1141

    Article  CAS  Google Scholar 

  2. Lavu M, Bhushan S, Lefer DJ. Clin Sci, 2011, 120: 219–229

    Article  CAS  Google Scholar 

  3. Pan LL, Liu XH, Gong QH, Zhu YZ. Amino Acids, 2011, 41: 205–215

    Article  CAS  Google Scholar 

  4. Gong QH, Shi XR, Hong ZY, Pan LL, Liu XH, Zhu, YZ. J Alzheimers Dis, 2011, 24: 173–182

    CAS  Google Scholar 

  5. Whiteman M, Gooding KM, Whatmore JL, Ball CI, Mawson D, Skinner K, Tooke JE, Shore AC. Diabetologia, 2010, 53: 1722–1726

    Article  CAS  Google Scholar 

  6. Abe K, Kimura H. J Neurosci, 1996, 16: 1066–1071

    CAS  Google Scholar 

  7. Shibuya N, Mikami Y, Kimura Y, Nagahara N, Kimura H. J Biochem, 2009, 146: 623–626

    Article  CAS  Google Scholar 

  8. Kamoun P, Belardinelli MC, Chabli A, Lallouchi K, Chadefaux- Vekemans B. Am J Med Genet A, 2003, 116: 310–311

    Article  Google Scholar 

  9. Yang W, Yang GD, Jia XM, Wu LY, Wang R. J Physiol, 2005, 569: 519–531

    Article  CAS  Google Scholar 

  10. Yang GD, Wu LY, Jiang B, Yang W, Qi JS, Cao K, Meng QH, Mustafa AK, Mu WT, Zhang SM, Snyder SH, Wang R. Science, 2008, 322: 587–590

    Article  CAS  Google Scholar 

  11. Fiorucci S, Antonelli E, Mencarelli A, Oriandi S, Renga B, Rizzo G, Distrutti E, Shah V, Morelli A. Hepatology, 2005, 42: 539–548

    Article  CAS  Google Scholar 

  12. Eto K, Asada T, Arima K, Makifuchi T, Kimura H. Biochem Bioph Res Co, 2002, 293: 1485–1488

    Article  CAS  Google Scholar 

  13. Kashfi K, Olson KR. Biochem Pharmacol, 2013, 85: 689–703

    Article  CAS  Google Scholar 

  14. Kamoun P. Amino Acids, 2004, 26: 243–254

    Article  CAS  Google Scholar 

  15. Mikami Y, Shibuya N, Kimura Y, Nagahara N, Ogasawara Y, Kimura H. Biochem J, 2011, 439: 479–485

    Article  CAS  Google Scholar 

  16. Kimura Y, Goto YI, Kimura H. Antioxid Redox Sign, 2010, 12: 1–13

    Article  CAS  Google Scholar 

  17. Kobayashi H, Ogawa M, Alford R, Choyke P, Urano Y. Chem Rev, 2010, 110: 2620–2640

    Article  CAS  Google Scholar 

  18. Qian Y, Karpus J, Kabil O, Zhang SY, Zhu HL, Banerjee R, Zhao J, He C. Nat Commun, 2011, 2: 495

    Article  CAS  Google Scholar 

  19. Sasakura K, Hanaoka K, Shibuya N, Mikami Y, Kimura Y, Komatsu T, Ueno T, Terai T, Kimura H, Nagano T. J Am Chem Soc, 2011, 133: 18003–18005

    Article  CAS  Google Scholar 

  20. Liu CR, Pan J, Li S, Zhao Y, Wu LY, Berkman CE, Whorton AR, Xian M. Angew Chem Int Ed, 2011, 50: 10327–10329

    Article  CAS  Google Scholar 

  21. Wan QQ, Song YC, Li Z, Gao XH, Ma HM. Chem Commun, 2013, 49: 502–504

    Article  CAS  Google Scholar 

  22. Mao GJ, Wei TT, Wang XX, Huan SY, Lu DQ, Zhang J, Zhang XB, Tan WH, Shen GL, Yu RQ. Anal Chem, 2013, 85: 7875–7881

    Article  CAS  Google Scholar 

  23. Yang S, Qi Y, Liu CH, Wang YJ, Zhao YR, Wang LL, Li JS, Tan WH, Yang RH. Anal Chem, 2014, 86: 7508–7515

    Article  CAS  Google Scholar 

  24. Lin VS, Lippert AR, Chang CJ. Proc Natl Acad Sci USA, 2013, 110: 7131–7135

    Article  Google Scholar 

  25. Chen YC, Zhu CC, Yang ZH, Chen JJ, He YF, Jiao Y, He WJ, Qiu L, Cen JJ, Guo ZJ. Angew Chem Int Ed, 2013, 52: 1688–1691

    Article  CAS  Google Scholar 

  26. Hong YN, Lam JW, Tang BZ. Chem Soc Rev, 2011, 40: 5361–5388

    Article  CAS  Google Scholar 

  27. Hu RR, Leung NL, Tang BZ. Chem Soc Rev, 2014, 43: 4494–4562

    Article  CAS  Google Scholar 

  28. Xue XD, Zhao YY, Dai LR, Zhang X, Hao XH, Zhang CQ, Huo SD, Liu J, Liu C, Kumar A, Chen WQ, Zou GZ, Liang XJ. Adv Mater, 2014, 26: 712–717

    Article  CAS  Google Scholar 

  29. Yu Y, Feng C, Hong YN, Liu JZ, Chen SJ, Ng KM, Luo KQ, Tang BZ. Adv Mater, 2011, 23: 3298–3302

    Article  CAS  Google Scholar 

  30. Ding D, Li K, Liu B, Tang BZ. Accounts Chem Res, 2013, 46: 2441–2453

    Article  CAS  Google Scholar 

  31. Liu YY, Wang Z, Zhang GX, Zhang W, Zhang DQ, Jiang XY. Analyst, 2012, 137: 4654–4657

    Article  CAS  Google Scholar 

  32. Chen WW, Li QZ, Zheng WS, Hu F, Zhang GX, Wang Z, Zhang DQ, Jiang XY. Angew Chem Int Ed, 2014, 53: 13734–13739

    Article  CAS  Google Scholar 

  33. Zhang L, Liu WW, Huang XH, Zhang GX, Wang XF, Wang Z, Zhang DQ, Jiang XY. Analyst, 2015, 140: 5849–5854

    Article  CAS  Google Scholar 

  34. Huang XH, Gu XG, Zhang GX, Zhang DQ. Chem Commun, 2012, 48: 12195–12197

    Article  CAS  Google Scholar 

  35. Moore PK, Bhatia M, Moochhala S. Trends Pharmacol Sci, 2003, 24: 609–611

    Article  CAS  Google Scholar 

  36. Dombkowski RA, Russell MJ, Olson KR. Am J Physiol-Reg I, 2004, 286: R678–R685

    CAS  Google Scholar 

  37. Lin VS, Chang CJ. Curr Opin Chem Biol, 2012, 16: 595–601

    Article  CAS  Google Scholar 

  38. Hong YN, Lam JWY, Tang BZ. Chem Commun, 2009, 29: 4332–4353

    Article  CAS  Google Scholar 

  39. Lutolf MP, Tirelli N, Cerritelli S, Cavalli L, Hubbell JA. Bioconjugate Chem, 2001, 12: 1051–1056

    Article  CAS  Google Scholar 

  40. Lv X, Liu J, Liu Y, Zhao Y, Sun YQ, Wang P, Guo W. Chem Commun, 2011, 47: 12843–12845

    Article  CAS  Google Scholar 

  41. Leung CWT, Hong YN, Chen SJ, Zhao EG, Lam JWY, Tang BZ. J Am Chem Soc, 2012, 135: 62–65

    Article  CAS  Google Scholar 

  42. Hu QL, Gao M, Feng GX, Liu B. Angew Chem Int Ed, 2014, 53: 14225–14229

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingyu Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Huang, X., Liu, W. et al. Organic nanoparticles formed by aggregation-induced fluorescent molecules for detection of hydrogen sulfide in living cells. Sci. China Chem. 59, 106–113 (2016). https://doi.org/10.1007/s11426-015-5543-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5543-2

Keywords

Navigation