Skip to main content
Log in

Directing group-assisted transition-metal-catalyzed vinylic C-H bond functionalization

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Transition-metal-catalyzed C-H bond activation represents one of the most attractive research areas in organic synthesis. In contrast to the great developments made in directed C-H bond functionalization of arenes, the directing group-assisted activation of non-aromatic vinylic C-H bonds still remains challenging. During the recent years, significant progress has been made in this fascinating field with various functionalized alkenes, heterocycles and carbocycles being obtained. This article will focus on the recent achievements in the field of directing-group-assisted vinylic C-H bond functionalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For selected recent reviews of transition-metal-catalyzed C-H bond functionalization, see: a) Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Beyond directing groups: transition-metal-catalyzed C-H activation of simple arenes. Angew Chem Int Ed, 2012, 51: 10236–10254

    Article  CAS  Google Scholar 

  2. Lyons TW, Sanford MS. Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem Rev, 2010, 110: 1147–1169

    Article  CAS  Google Scholar 

  3. Neufeldt SR, Sanford MS. Controlling site selectivity in palladium-catalyzed C-H bond functionalization. Acc Chem Res, 2012, 45: 936–946

    Article  CAS  Google Scholar 

  4. Ackermann L. Carboxylate-assisted transition-metal-catalyzed C-H bond functionalizations: mechanism and scope. Chem Rev, 2011, 111: 1315–1345

    Article  CAS  Google Scholar 

  5. Song G, Wang F, Li X. C-C, C-O and C-N bond formation via rhodium(III)-catalyzed oxidative C-H activation. Chem Soc Rev, 2012, 41: 3651–3678

    Article  CAS  Google Scholar 

  6. Arockiam PB, Bruneau C, Dixneuf PH. Ruthenium(II)-catalyzed C-H bond activation and functionalization. Chem Rev, 2012, 112: 5879–5918

    Article  CAS  Google Scholar 

  7. Engle KM, Mei TS, Wasa M, Yu J. Weak coordination as a powerful means for developing broadly useful C-H functionalization reactions. Acc Chem Res, 2012, 45: 788–802

    Article  CAS  Google Scholar 

  8. For selected recent reviews, see: a) Colby DA, Bergman RG, Ellman JA. Rhodium-catalyzed C-C bond formation via heteroatom-directed C-H bond activation. Chem Rev, 2010, 110: 624–655

    Article  CAS  Google Scholar 

  9. Colby DA, Tsai AS, Bergman RG, Ellman JA. Rhodium catalyzed chelation-assisted C-H bond functionalization reactions. Acc Chem Res, 2012, 45: 814–825

    Article  CAS  Google Scholar 

  10. For selected examples, see: a) Gung, BW, Kumi G. Total synthesis of (S)-(-)-(E)-15,16-dihydrominquartynoic acid: a highly potent anticancer agent. J Org Chem, 2004, 69: 3488–3492

    Article  CAS  Google Scholar 

  11. El-Jaber N, Estevez-Braun A, Ravelo AG, Munoz-Munoz O, Rodriguez-Afonso A, Murguia JR. Acetylenic acids from the aerial parts of nanodea muscosa. J Nat Prod, 2003, 66: 722–724

    Article  CAS  Google Scholar 

  12. Fontana A, D’lppolito G, D’Souza L, Mollo E, Parameswaram PS, Cimino G. New acetogenin peroxides from the indian sponge acarnus bicladotylota. J Nat Prod, 2001, 64: 131–133

    Article  CAS  Google Scholar 

  13. Kong JR, Ngai MY, Krische MJ. Highly enantioselective direct reductive coupling of conjugated alkynes and a-ketoesters via rhodium-catalyzed asymmetric hydrogenation. J Am Chem Soc, 2006, 128: 718–719

    Article  CAS  Google Scholar 

  14. Miller KM, Luanphaisarnnont T, Molinaro C, Jamison TF. Alkene-directed, nickel-catalyzed alkyne coupling reactions. J Am Chem Soc, 2004, 126: 4130–4131

    Article  CAS  Google Scholar 

  15. Collins KD, Lied F, Glorius F. Preparation of conjugated 1,3-enynes by Rh(III)-catalyzed alkynylation of alkenes via C-H activation. Chem Commun, 2014, 50: 4459–4461

    Article  CAS  Google Scholar 

  16. Xie F, Qi Z, Yu S, Li X. Rh(III)- and Ir(III)-catalyzed C-H alkynylation of arenes under chelation assistance. J Am Chem Soc, 2014, 136: 4780–4787

    Article  CAS  Google Scholar 

  17. Feng C, Feng D, Luo Y, Loh TP. Rhodium(III)-catalyzed olefinic C-H alkynylation of acrylamides using tosyl-imide as directing group. Org Lett, 2014, 16: 5956–5959

    Article  CAS  Google Scholar 

  18. Feng C, Feng D, Loh TP. Rhodium(III)-catalyzed olefinic C-H alkynylation of enamides at room temperature. Chem Commun, 2014, 50: 9865–9868

    Article  CAS  Google Scholar 

  19. Xu Y, Zhang Q, He T, Meng F, Loh TP. Palladium-catalyzed direct alkynylation of N-vinylacetamides. Adv Synth Catal, 2014, 356: 1539–1543

    Article  CAS  Google Scholar 

  20. For selected references, see: a) Negishi E. Magical power of transition metals: past, present, and future. Angew Chem Int Ed, 2011, 50: 6738–6764

    Article  CAS  Google Scholar 

  21. Negishi E, Huang Z, Wang GW, Mohan S, Wang C, Hattori H. Recent advances in efficient and selective synthesis of di-, tri-, and tetrasubstituted alkenes via Pd-catalyzed alkenylation-carbonyl olefination synergy. Acc Chem Res, 2008, 41: 1474–1485

    Article  CAS  Google Scholar 

  22. Kuttruff CA, Geiger S, Cakmak M, Mayer P, Trauner D. An approach to aminonaphthoquinone ansamycins using amodified Danishefsky diene. Org Lett, 2012, 14: 1070–1073

    Article  CAS  Google Scholar 

  23. Cutignano A, Bruno I, Bifulco G, Casapullo A, Debitus C, Gomez-Paloma L, Riccio R. Dactylolide, a new cytotoxic macrolide from the vanuatu sponge Dactylospongia sp. Eur J Org Chem, 2001: 775–778

    Google Scholar 

  24. For selected recent reviews, see: a) Shang X, Liu Z. Transition metal-catalyzed Cvinyl-Cvinyl bond formation via double Cvinyl-H bond activation. Chem Soc Rev, 2013, 42: 3253–3260

    Article  CAS  Google Scholar 

  25. Li B, Dixneuf PH. sp2 C-H bond activation in water and catalytic cross-coupling reactions. Chem Soc Rev, 2013, 42: 5744–5767

    Article  CAS  Google Scholar 

  26. Besset T, Kuhl N, Patureau FW, Glorius F. Rh(III)-catalyzed oxidative olefination of vinylic C-H bonds: efficient and selective access to di-unsaturated a-amino acid derivatives and other linear 1,3-butadienes. Chem Eur J, 2011, 17: 7167–7171

    Article  CAS  Google Scholar 

  27. Xu Y, Chok YK, Loh TP. Synthesis and characterization of a cyclic vinylpalladium(II) complex: vinylpalladium species as the possible intermediate in the catalytic direct olefination reaction of enamide. Chem Sci, 2011, 2: 1822–1825

    Article  CAS  Google Scholar 

  28. Zhang J, Loh TP. Ruthenium- and rhodium-catalyzed cross-coupling reaction of acrylamides with alkenes: efficient access to (Z, E)-dienamides. Chem Commun, 2012, 48: 11232–11234

    Article  CAS  Google Scholar 

  29. Feng R, Yu W, Wang K, Liu Z, Zhang Y. Ester-directed selective olefination of acrylates by rhodium catalysis. Adv Synth Catal, 2014, 356: 1501–1508

    Article  CAS  Google Scholar 

  30. Boultadakis-Arapinis M, Hopkinson MN, Glorius F. Using Rh(III)-catalyzed C-H activation as a tool for the selective functionalization of ketone-containing molecules. Org Lett, 2014, 16: 1630–1633

    Article  CAS  Google Scholar 

  31. For selected examples, see: a) Stehling L, Wilke G. Cobalt-catalyzed reactions of octamethyl-[4]-radialene and 2,5-dimethyl-2,3,4-hexatriene with ethene. Angew Chem Int Ed, 1988, 27: 571–572

    Article  Google Scholar 

  32. Payne AD, Willis AC, Sherburn MS. Practical synthesis and Diels-Alder chemistry of [4]dendralene. J Am Chem Soc, 2005, 127: 12188–12189

    Article  CAS  Google Scholar 

  33. Rieder CJ, Karl J, Winberg KJ, West FG. Cyclization of cross-conjugated trienes: the vinylogous Nazarov reaction. J Am Chem Soc, 2009, 131: 7504–7505

    Article  CAS  Google Scholar 

  34. Wang H, Beiring B, Yu DG, Collins KD, Glorius F. [3]Dendralene synthesis: rhodium(III)-catalyzed alkenyl C-H activation and coupling reaction with allenyl carbinol carbonate. Angew Chem Int Ed, 2013, 52: 12430–12434

    Article  CAS  Google Scholar 

  35. Gong TJ, Su W, Liu ZJ, Cheng WM, Xiao B, Fu Y. Rh(III)-catalyzed C-H activation with allenes to synthesize conjugated olefins. Org Lett, 2014, 16: 330–333

    Article  CAS  Google Scholar 

  36. For selected recent reviews, see: a) Daugulis O, Do H, Shabashov D. Palladium- and copper-catalyzed arylation of carbon-hydrogen bonds. Acc Chem Res, 2009, 42: 1074–1086

    Article  CAS  Google Scholar 

  37. Bras JL, Muzart J. Intermolecular dehydrogenative Heck reactions. Chem Rev, 2011, 111: 1170–1214

    Article  Google Scholar 

  38. Zhou H, Chung WJ, Xu YH, Loh TP. Direct arylation of cyclic enamides via Pd(II)-catalyzed C-H activation. Chem Commun, 2009, 45: 3472–3474

    Article  Google Scholar 

  39. Zhou H, Xu Y, Chung W, Loh TP. Palladium-catalyzed direct arylation of cyclic enamides with aryl silanes by sp2 C-H activation. Angew Chem Int Ed, 2009, 48: 5355–5357

    Article  CAS  Google Scholar 

  40. Wencel-Delord J, Nimphius C, Patureau FW, Glorius F. Undirected arene and chelate-assisted olefin C-H bond activation: [RhIIICp*]-catalyzed dehydrogenative alkene-arene coupling as a new pathway for the selective synthesis of highly substituted Z olefins. Chem Asian J, 2012, 7: 1208–1212

    Article  CAS  Google Scholar 

  41. Lei Z, Ye J, Sun J, Shi Z. Direct alkenyl C-H functionalization of cyclic enamines with carboxylic acids via Rh catalysis assisted by hydrogen bonding. Org Chem Front, 2014, 1: 634–638

    Article  CAS  Google Scholar 

  42. He H, Liu W, Dai L, You S. Ir-catalyzed cross-coupling of styrene derivatives with allylic carbonates: free amine assisted vinyl C-H bond activation. J Am Chem Soc, 2009, 131: 8346–8347

    Article  CAS  Google Scholar 

  43. Ye K, He H, Liu W, Dai L, You S. Iridium-catalyzed allylic vinylation and asymmetric allylic amination reactions with o-aminostyrenes. J Am Chem Soc, 2011, 133: 19006–19014

    Article  CAS  Google Scholar 

  44. Feng C, Feng D, Loh TP. Rhodium(III)-catalyzed C-H allylation of electron-deficient alkenes with allyl acetates. Chem Commun, 2015, 51: 342–345

    Article  Google Scholar 

  45. For selected recent reviews, see: a) Furuya T, Kamlet AS, Ritter T. Catalysis for fluorination and trifluoromethylation. Nature, 473: 470–477

  46. Muller1 K, Faeh C, Diederich F. Fluorine in pharmaceuticals: looking beyond intuition. Science, 317: 1881–1886

  47. Feng C, Loh TP. Directing-group-assisted copper-catalyzed olefinic trifluoromethylation of electron-deficient alkenes. Angew Chem Int Ed, 2013, 52: 12414–12417

    Article  CAS  Google Scholar 

  48. Besset T, Cahard D, Pannecoucke X. Regio- and diastereoselective Cu-mediated trifluoromethylation of functionalized alkenes. J Org Chem, 2014, 79: 413–418

    Article  CAS  Google Scholar 

  49. Enthaler S, Company A. Palladium-catalysed hydroxylation and alkoxylation. Chem Soc Rev, 2011, 40: 4912–4924

    Article  CAS  Google Scholar 

  50. Yu W, Chen J, Gao K, Liu Z, Zhang Y. Amide-assisted acetoxylation of vinyl Csp2-H bonds by rhodium catalysis. Org Lett, 2014, 16: 4870–4873

    Article  CAS  Google Scholar 

  51. Zhang L, Hao X, Zhang S, Liu Z, Zheng X, Gong J, Niu J, Song M. Cobalt-catalyzed Csp2-H alkoxylation of aromatic and olefinic carboxamides. Angew Chem Int Ed, 2015, 54: 272–275

    Article  CAS  Google Scholar 

  52. Xu Y, Wang M, Lu P, Loh TP. Palladium-catalyzed alkenyl C-H bond sulfonylation reaction using organosulfonyl chlorides. Tetrahedron, 2013, 69: 4403–4407

    Article  CAS  Google Scholar 

  53. Kuhl N, Schroder N, Glorius F. Rh(III)-catalyzed halogenation of vinylic C-H bonds: rapid and general access to Z-halo acrylamides. Org Lett, 2013, 15: 3860–3863

    Article  CAS  Google Scholar 

  54. Colby DA, Bergman RG, Ellman JA. Synthesis of dihydropyridines and pyridines from imines and alkynes via C-H activation. J Am Chem Soc, 2008, 130: 3645–3651

    Article  CAS  Google Scholar 

  55. Colby DA, Bergman RG, Ellman JA. Stereoselective alkylation of α,β-unsaturated imines via C-H bond activation. J Am Chem Soc, 2006, 128: 5604–5605

    Article  CAS  Google Scholar 

  56. Parthasarathy K, Jeganmohan M, Cheng CH. Rhodium-catalyzed one-pot synthesis of substituted pyridine derivatives from α,β-unsaturated ketoximes and alkynes. Org Lett, 2008, 10: 325–328

    Article  CAS  Google Scholar 

  57. Mochida S, Hirano K, Satoh T, Miura M. Synthesis of functionalized a-pyrone and butenolide derivatives by rhodium-catalyzed oxidative coupling of substituted acrylic acids with alkynes and alkenes. J Org Chem, 2009, 74: 6295–6298

    Article  CAS  Google Scholar 

  58. Satoh T, Miura M. Oxidative coupling of aromatic substrates with alkynes and alkenes under rhodium catalysis. Chem Eur J, 2010, 16: 11212–11222

    Article  CAS  Google Scholar 

  59. Su Y, Zhao M, Han K, Song G, Li X. Synthesis of 2-pyridones and iminoesters via Rh(III)-catalyzed oxidative coupling between acrylamides and alkynes. Org Lett, 2010, 12: 5462–5465

    Article  CAS  Google Scholar 

  60. Ackermann L, Lygin AV, Hofmann N. Ruthenium-catalyzed oxidative synthesis of 2-pyridones through C-H/N-H bond functionalizations. Org Lett, 2011, 13: 3278–3281

    Article  CAS  Google Scholar 

  61. Zhao M, Ren Z, Wang Y, Guan Z. Pd-catalyzed oxidative coupling of enamides and alkynes for synthesis of substituted pyrroles. Org Lett, 2014, 16: 608–611

    Article  CAS  Google Scholar 

  62. Seoane A, Casanova N, Quinones N, Mascarenas JL, Gulias M. Straightforward assembly of benzoxepines by means of a rhodium(III)-catalyzed C-H functionalization of o-vinylphenols. J Am Chem Soc, 2014, 136: 834–837

    Article  CAS  Google Scholar 

  63. Seoane A, Casanova N, Quinones N, Mascarenas JL, Gulias M. Rhodium(III)-catalyzed dearomatizing (3+2) annulation of 2-alkenylphenols and alkynes. J Am Chem Soc, 2014, 136: 7607–7610

    Article  CAS  Google Scholar 

  64. Kujawa S, Best D, Burns DJ, Lam HW. Synthesis of spirocyclic enones by rhodium-catalyzed dearomatizing oxidative annulation of 2-alkenylphenols with alkynes and enynes. Chem Eur J, 2014, 20: 8599–8602

    Article  CAS  Google Scholar 

  65. For the examples of the application of diazo compounds in C-H bond activation, see: a) Xia Y, Liu Z, Feng S, Zhang Y, Wang J. Ir(III)-catalyzed aromatic C-H bond functionalization via metal carbene migratory insertion. J Org Chem, 2015, 80: 223–236

    Article  CAS  Google Scholar 

  66. Hu F, Xia Y, Ye F, Liu Z, Ma C, Zhang Y, Wang J. Rh(III)-catalyzed direct ortho-alkenylation of N-phenoxyacetamides with N-tosylhydrazones or diazoesters via C-H activation. Angew Chem Int Ed, 2014, 53: 1364–1367

    Article  CAS  Google Scholar 

  67. Shi Z, Koester DC, Boultadakis-Arapinis M, Glorius F. Rh(III)-catalyzed synthesis of multi-substituted isoquinoline and pyridine N-oxides from oximes and diazo compounds. J Am Chem Soc, 2013, 135: 12204–12207

    Article  CAS  Google Scholar 

  68. Piou T, Rovis T. Rh(III)-catalyzed cyclopropanation initiated by C-H activation: ligand development enables a diastereoselective (2+1) annulation of N-enoxyphthalimides and alkenes. J Am Chem Soc, 2014, 136: 11292–11295

    Article  CAS  Google Scholar 

  69. Sasano K, Takaya J, Iwasawa N. Palladium(II)-catalyzed direct carboxylation of alkenyl C-H bonds with CO2. J Am Chem Soc, 2013, 135: 10954–10957

    Article  CAS  Google Scholar 

  70. Chen M, Ren Z, Wang Y, Guan Z. Palladium-catalyzed oxidative carbonylation of the alkenyl C-H bonds of enamides: synthesis of 1, 3-oxazin-6-ones. Angew Chem Int Ed, 2013, 52: 14196–14199

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Hu, F., Zhang, Y. et al. Directing group-assisted transition-metal-catalyzed vinylic C-H bond functionalization. Sci. China Chem. 58, 1252–1265 (2015). https://doi.org/10.1007/s11426-015-5362-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5362-5

Keywords

Navigation