Skip to main content
Log in

Modulating the metal/organic interface via CuTCNQ decorated layer toward high performance bottom-contact single-crystal transistors

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The organic single-crystal field-effect transistors using anthracene derivative, H-Ant as an active layer with source/drain electrodes decorated by metal charge transfer salt (CuTCNQ) were fabricated. We demonstrated that this bottom-contact structure displayed an obvious improvement in the electrical characteristics relative to their pristine copper and top-contact gold electrode counterparts. This observation could be ascribed to the lower contact resistance resulting from the energetic match between electrodes and semiconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Usta H, Facchetti A, Marks TJ. n-Channel semiconductor materials design for organic complementary circuits. Acc Chem Res, 2011, 44: 501–510

    Article  CAS  Google Scholar 

  2. Chu CW, Chen CW, Li SH, Wu EHE, Yang Y. Integration of organic light-emitting diode and organic transistor via a tandem structure. Appl Phys Lett, 2005, 86: 253503

    Article  Google Scholar 

  3. Di CA, Zhang FJ, Zhu DB. Multi-functional integration of organic field-effect transistors (OFETs): advances and perspectives. Adv Mater, 2013, 25: 313–330

    Article  CAS  Google Scholar 

  4. Di CA, Liu YQ, Yu G, Zhu DB. Interface engineering: an effective approach toward high-performance organic field-effect transistors. Acc Chem Res, 2009, 42: 1573–1583

    Article  CAS  Google Scholar 

  5. Dong HL, Jiang L, Hu WP. Interface engineering for high-performance organic field-effect transistors. Phys Chem Chem Phys, 2012, 14: 14165–14180

    Article  CAS  Google Scholar 

  6. Ma H, Yip HL, Huang Fei, Jen AKY. Interface engineering for organic electronics. Adv Funct Mater, 2010, 20: 1371–1388

    Article  CAS  Google Scholar 

  7. Chu CW, Li SH, Chen CW, Shrotriya V, Yang Y. High-performance organic thin-film transistors with metal oxide/metal bilayer electrode. Appl Phys Lett, 2005, 87: 193508

    Article  Google Scholar 

  8. Di CA, Yu G, Liu YQ, Xu XJ, Wei DC, Song YB, Sun YM, Wang Y, Zhu DB, Liu J, Liu XY, Wu DX. High-performance low-cost organic field-effect transistors with chemically modified bottom electrodes. J Am Chem Soc, 2006, 126: 16418–16419

    Article  Google Scholar 

  9. Frisch J, Glowatzki H, Janietz S, Koch N. Solution-based metal electrode modification for improved charge injection in polymer field-effect transistors. Org Electron, 2009, 10: 1459–1465

    Article  CAS  Google Scholar 

  10. Whiting GL, Arias AC. Chemically modified ink-jet printed silver electrodes for organic field-effect transistors. Appl Phys Lett, 2009, 95: 253302

    Article  Google Scholar 

  11. Kim WK, Hong K, Lee JL. Enhancement of hole injection in pentacene organic thin-film transistor of O2 plasma-treated Au electrodes. Appl Phys Lett, 2006, 89: 142117

    Article  Google Scholar 

  12. Rentenberger S, Vollmer A, Zojer E, Schennach R, Koch N. UV/ozone treated Au for air-stable, low hole injection barrier electrodes in organic electronics. J Appl Phys, 2006, 100: 053701

    Article  Google Scholar 

  13. Bock C, Pham DV, Kunze U, Kafer D, Witte G, Woll Ch. Improved morphology and charge carrier injection in pentacene field-effect transistors with thiol-treated electrodes. J Appl Phys, 2006, 100: 114517

    Article  Google Scholar 

  14. Wu YL, Li YN, Ong BS. Printed silver ohmic contacts for high-mobility organic thin-film transistors. J Am Chem Soc, 2006, 128: 4202–4203

    Article  CAS  Google Scholar 

  15. Liu SG, Liu YQ, Wu PJ, Zhu DB. Multifaceted study of CuTCNQ thin-film materials, fabrication, morphology, and spectral and electrical switching properties. Chem Mater, 1996, 8: 2779–2787

    Article  CAS  Google Scholar 

  16. Liu YL, Li HX, Tu DY, Ji ZY, Wang CS, Tang QX, Liu M, Hu WP, Liu YQ, Zhu DB. Controlling the growth of single crystalline nanoribbons of copper tetracyanoquinodimethane for the fabrication of devices and device arrays. J Am Chem Soc, 2006, 128: 12917–12922

    Article  CAS  Google Scholar 

  17. Jiang L, Gao JH, Wang EJ, Li HX, Wang ZH, Hu WP, Jiang L. Organic single-crystalline ribbons of a rigid “H”-type anthracene derivative and high-performance, short-channel field-effect transistors of individual micro/nanometer-sized ribbons fabricated by an “organic ribbon mask” technique. Adv Mater, 2008, 20: 2735–2740

    Article  CAS  Google Scholar 

  18. Di CA, Wei DC, Yu G, Liu YQ, Guo YL, Zhu DB. Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv Mater, 2008, 20: 3289–3293

    Article  CAS  Google Scholar 

  19. Pang SP, Hernandez Y, Feng XL, Müllen K. Graphene as transparent electrode material for organic electronics. Adv Mater, 2011, 23: 2779–2795

    Article  CAS  Google Scholar 

  20. Natali D, Caironi M. Charge injection in solution-processed organic field-effect transistors: physics, models and characterization methods. Adv Mater, 2012, 24: 1357–1387

    Article  CAS  Google Scholar 

  21. Yoon MH, Kim C, Facchetti A, Marks TJ. Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors. J Am Chem Soc, 2006, 128: 12851–12869

    Article  CAS  Google Scholar 

  22. Wang SD, Minari T, Miyadera T, Aoyagi Y, Tsukagoshi K. Bias stress instability in pentacene thin film transistors: contact resistance change and channel threshodl voltage shift. Appl Phys Lett, 2008, 92: 063305

    Article  Google Scholar 

  23. Wang SD, Yan Y, Tsukagoshi K. Understanding contact behavior in organic thin film transistors. Appl Phys Lett, 2010, 97: 063307

    Article  Google Scholar 

  24. Weis M, Lin J, Taguchi D, Manaka T, Iwamoto M. Insight into the contact resistance problem by direct probing of the potential drop in organic field-effect transistors. Appl Phys Lett, 2010, 97: 263304

    Article  Google Scholar 

  25. Tang Q, Tong Y, Li H, Ji Z, Li L, Hu W, Liu Y, Zhu D. High-performance air-stable bipolar field-effect transistors of organic single-crystalline ribbons with an air-gap dielectric. Adv Mater, 2008, 20: 1511–1515

    Article  CAS  Google Scholar 

  26. Di CA, Yu G, Liu YQ, Guo YL, Sun XN, Zheng J, Wen YG, Wu WP, Zhu DB. Selective crystallization of organic semiconductors for high performance organic field-effect transistors. Chem Mater, 2009, 21: 4873–4879

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonggang Zhen or Wenping Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Ji, D., Wang, E. et al. Modulating the metal/organic interface via CuTCNQ decorated layer toward high performance bottom-contact single-crystal transistors. Sci. China Chem. 58, 1027–1031 (2015). https://doi.org/10.1007/s11426-014-5240-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5240-6

Keywords

Navigation