Skip to main content
Log in

Daytime HONO formation in the suburban area of the megacity Beijing, China

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Nitrous acid (HONO), as a primary precursor of OH radicals, has been considered one of the most important nitrogen-containing species in the atmosphere. Up to 30% of primary OH radical production is attributed to the photolysis of HONO. However, the major HONO formation mechanisms are still under discussion. During the Campaigns of Air Quality Research in Beijing and Surrounding Region (CAREBeijing2006) campaign, comprehensive measurements were carried out in the megacity Beijing, where the chemical budget of HONO was fully constrained. The average diurnal HONO concentration varied from 0.33 to 1.2 ppbv. The net OH production rate from HONO, P OH(HONO)net, was on average (from 05:00 to 19:00 h) 7.1 × 106 molecule/(cm3 s), 2.7 times higher than from O3 photolysis. This production rate demonstrates the important role of HONO in the atmospheric chemistry of megacity Beijing. An unknown HONO source (P unknown) with an average of 7.3 × 106 molecule/(cm3 s) was derived from the budget analysis during daytime. P unknown provided four times more HONO than the reaction of NO with OH did. The diurnal variation of P unknown showed an apparent photo-enhanced feature with a maximum around 12:00 h, which was consistent with previous studies at forest and rural sites. Laboratory studies proposed new mechanisms to recruit NO2 and J(NO2) in order to explain a photo-enhancement of of P unknown. In this study, these mechanisms were validated against the observation-constraint P unknown. The reaction of exited NO2 accounted for only 6% of P unknown, and P unknown poorly correlated with [NO2] (R = 0.26) and J(NO2)[NO2] (R = 0.35). These results challenged the role of NO2 as a major precursor of the missing HONO source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kleffmann J, Gavriloaiei T, Hofzumahaus A, Holland F, Koppmann R, Rupp L, Schlosser E, Siese M, Wahner A. Daytime formation of nitrous acid: a major source of OH radicals in a forest. Geophys Res Lett, 2005, 32, doi: 10.1029/2005GL022524

    Google Scholar 

  2. Su H, Cheng YF, Shao M, Gao DF, Yu ZY, Zeng LM, Slanina J, Zhang YH, Wiensohler A. Nitrous acid (HONO) and its daytime sources at a rural site during the 2004 PRIDE-PRD experiment in China. J Geophys Res, 2008, 113, doi: 10.1029/2007JD009060.

    Google Scholar 

  3. Zhou XL, Beine HJ, Honrath RE, Fuentes JD, Simpson W, Shepson PB, Bottenheim JW. Snowpack photochemical production of HONO: a major source of OH in the Arctic boundary layer in springtime. Geophys Res Lett, 2001, 28: 4087–4090

    Article  CAS  Google Scholar 

  4. Acker K, Möller D, Wieprecht W, Meixner FX, Bohn B, Gilge S, Plass-Dülmer C, Berresheim H. Strong daytime production of OH from HNO2 at a rural mountain site. Geophys Res Lett, 2006, 33, doi: 10.1029/2005GL024643

    Google Scholar 

  5. Alicke B, Platt U, Stutz J. Impact of nitrous acid photolysis on the total hydroxyl radical budget during the limitation of oxidant production/pianura padana produzione di ozono study in Milan. J Geophys Res, 2002, 107: LOP 9-1–LOP 9-17

    Google Scholar 

  6. Perner D, Platt U. Detection of nitrous acid in the atmosphere by differential optical absorption. Geophys Res Lett, 1979, 6: 917–920

    Article  CAS  Google Scholar 

  7. Winer AM, Biermann HW. Long pathlength differential optical-absorption spectroscopy (DOAS) measurements of gaseous HONO, NO2 and HCHO in the California south coast air basin. Res Chem Intermediat, 1994, 20: 423–445

    Article  CAS  Google Scholar 

  8. Ren XR, Harder H, Martinez M, Lesher RL, Oliger A, Simpas JB, Brune WH, Schwab JJ, Demerjian KL, He Y, Zhou XL, Gao HL. OH and HO2 chemistry in the urban atmosphere of New York City. Atmos Environ, 2003, 37: 3639–3651

    Article  CAS  Google Scholar 

  9. Zhang, YH, Su H, Zhong LJ, Cheng YF, Zeng LM, Wang XS, Xiang YR, Wang JL, Gao DF, Shao M, Fan SJ, Liu SC. Regional ozone pollution and observation-based approach for analyzing ozone-precursor relationship during the PRIDE-PRD2004 campaign. Atmos Environ, 2008, 42: 6203–6218

    Article  CAS  Google Scholar 

  10. Kleffmann J, Lörzer JC, Wiesen P, Kern C, Trick S, Volkamer R, Rodenas M, Wirtz K. Intercomparison of the DOAS and LOPAP techniques for the detection of nitrous acid (HONO). Atmos Environ, 2006, 40: 3640–3652

    Article  CAS  Google Scholar 

  11. Stutz J, Alicke B, Neftel A. Nitrous acid formation in the urban atmosphere: gradient measurements of NO2 and HONO over grass in Milan, Italy. J Geophys Res, 2002, 107: LOP 5-1–LOP 5-15

    Google Scholar 

  12. Kessler C. Gasfoennige salpetrige saeure (HNO2) in der belasteten atmosphaere. Doctor Dissertation. Cologne: University of Cologne, 1984

    Google Scholar 

  13. Kirchstetter WT, Harley AR. Measurement of nitrous acid in motor vehicle exhaust. Environ Sci Technol, 1996, 30: 2843–2849

    Article  CAS  Google Scholar 

  14. Ackermann R. Auswirkung von kraftfahrzeugemissionen in der urbanen atmosphäre. Doctor Dissertation. Heidelberg: Heidelberg University, 2000

    Google Scholar 

  15. Kurtenbach R, Becker KH, Gomes JAG, Kleffmann J, Lörze JC, Spittler M, Wiesen P, Ackermann R, Geyer A, Platt U. Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel. Atmos Environ, 2001, 35: 3385–3394

    Article  CAS  Google Scholar 

  16. Alicke B, Geyer A, Hofzumahaus A, Holland F, Konrad S, Pätz HW, Schäfer J, Stutz J, Volz-Thomas A, Platt U. OH formation by HONO photolysis during the BERLIOZ experiment. J Geophys Res, 2003, 108: PHO 3-1–PHO 3-17

    Google Scholar 

  17. Stutz J, Alicke B, Ackermann R, Geyer A, Wang S, White AB, Williams EJ, Spicer CW, Fast JD. Relative humidity dependence of HONO chemistry in urban areas. J Geophys Res, 2004, 109, doi:10.1029/2003JD004135

    Google Scholar 

  18. Kleffmann J. Daytime sources of nitrous acid (HONO) in the atmospheric boundary layer. ChemPhysChem, 2007, 8: 1137–1144

    Article  CAS  Google Scholar 

  19. Sarwar G, Roselle SJ, Mathur R, Appel W, Dennis RL, Vogel B. A comparison of CMAQ HONO predictions with observations from the northeast oxidant and particle study. Atmos Environ, 2008, 42: 5760–5770

    Article  CAS  Google Scholar 

  20. Li X, Brauers T, Haeseler R, Bohn B, Fuchs H, Hofzumahaus A, Holland F, Lou S, Lu KD, Rohrer F, Hu M, Zeng LM, Zhang YH, Garland RM, Su H, Nowak A, Wiedensohler A, Takegawa N, Shao M, Wahner A. Exploring the atmospheric chemistry of nitrous acid (HONO) at a rural site in Southern China. Atmos Chem Phys, 2012, 12: 1497–1513

    Article  Google Scholar 

  21. Akimoto H, Takagi H, Sakamaki F. Photoenhancement of the nitrous acid formation in the surface reaction of nitrogen dioxide and water vapour: extra radical source in smog chamber experiments. Int J Chem Kinet, 1987, 19: 539–551

    Article  CAS  Google Scholar 

  22. Rohrer F, Bohn B, Brauers T, Brüning D, Johnen FJ, Wahner A, Kleffmann J. Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR. Atmos Chem Phys, 2005, 5: 2189–2201

    Article  CAS  Google Scholar 

  23. Stemmler K, Ammann M, Donders C, Kleffmann J, George C. Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid. Nature, 2006, 440: 195–198

    Article  CAS  Google Scholar 

  24. Zádor J, Turányi T, Wirtz K, Pilling MJ. Measurement and investigation of chamber radical sources in the European Photoreactor (EUPHORE). J Atmos Chem, 2006, 55: 147–166

    Article  Google Scholar 

  25. Li SP, Matthews J, Sinha A. Atmospheric hydroxyl radical production from electronically exited NO2 and H2O. Science, 2008, 319: 1657–1660

    Article  CAS  Google Scholar 

  26. Langridge JM, Gustafsson RJ, Griffiths PT, Cox RA, Lambert RM, Jones RL. Solar driven nitrous acid formation on building material surfaces containing titanium dioxide: a concern for air quality in urban areas. Atmos Environ, 2009, 43: 5128–5131

    Article  CAS  Google Scholar 

  27. Monge ME, D’Anna B, Mazri L, Giroir-Fendler A, Ammann M, Donaldson DJ, George C. Light changes the atmospheric reactivity of soot. Proc Natl Acad Sci USA, 2010, 107: 6605–6609

    Article  CAS  Google Scholar 

  28. Finlayson-Pitts BJ, Wingen LM, Sumner AL, Syomin D, Ramazan KA. The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: an integrated mechanism. Phys Chem Chem Phys, 2003, 5: 223–242

    Article  CAS  Google Scholar 

  29. Su H, Cheng Y, Oswald R, Behrendt T, Trebs I, Meixner FX, Andreae MO, Cheng P, Zhang Y, Poeschl U. Soil nitrite as a source of atmospheric HONO and OH radicals. Science, 2011, 333: 1616–1618

    Article  CAS  Google Scholar 

  30. Su H, Cheng Y, Pöschl U. The exchange of soil nitrite and atmospheric HONO: a missing process in the nitrogen cycle and atmospheric chemistry. In: Barnes I, Rudziński KJ. Disposal of Dangerous Chemicals in Urban Areas and Mega Cities. Berlin: Springer, 2013. 93–99

    Chapter  Google Scholar 

  31. Costabile F, Amoroso A, Wang F. Sub-μm particle size distributions in a suburban mediterranean area. Aerosol populations and their possible relationship with HONO mixing ratios. Atmos Environ, 2010, 44: 5258–5268

    Article  CAS  Google Scholar 

  32. Su H. HONO: a study to its sources and impacts from field measurements at the sub-urban areas of PRD region. Doctor Dissertation. Beijing: Peking University, 2008

    Google Scholar 

  33. Hofzumahaus A, Rohrer F, Lu KD, Boh B, Brauers T, Chang CC, Fuchs H, Holland F, Kita K, Kondo Y, Li X, Lou SR, Shao M, Zeng LM, Wahner A, Zhang YH. Amplified trace gas removal in the troposphere. Science, 2009, 324: 1702–1704

    Article  CAS  Google Scholar 

  34. Zhou XL, He Y, Huang G, Thornberry TD, Carroll MA, Bertman SB. Photochemical production of nitrous acid on glass sample manifold surface. Geophys Res Lett, 2002, 29: 26-1–26-4

    Article  Google Scholar 

  35. Heland J, Kleffmann J, Kurtenbach R, Wiesen P. A new instrument to measure gaseous nitrous acid (HONO) in the atmosphere. Environ Sci Technol, 2001, 35: 3207–3212

    Article  CAS  Google Scholar 

  36. Schlosser E, Brauers T, Dorn HP, Fuchs H, Haseler R, Hofzumahaus A, Holland F, Wahner A, Kanaya Y, Kajii Y, Miyamoto K, Nishida S, Watanabe K, Yoshino A, Kubistin D, Martinez M, Rudolf M, Harder H, Berresheim H, Elste T, Plass-Dulmer C, Stange G, Schurath U. Techincal note: formal blind intercomparison of OH measurements: results from the international campaign HOxComp. Atmos Chem Phys, 2009, 9: 7923–7948

    Article  CAS  Google Scholar 

  37. Lu KD, Hofzumahaus A, Holland F, Bohn B, Brauers T, Fuchs H, Hu M, Haseler R, Kita K, Kondo Y, Li X, Lou SR, Oebel A, Shao M, Zeng LM, Wahner A, Zhu T, Zhang YH, Rohrer F. Missing OH source in a suburban environment near Beijing: observed and modeled OH and HO2 concentrations in summer 2006. Atmos Chem Phys, 2013, 13: 1057–1080

    Article  CAS  Google Scholar 

  38. Bohn B, Corlett GK, Gillman M, Sanghavi S, Stange G, Tensing E, Vrekoussis M, Bloss WJ, Clapp LJ, Kortner M, Corn HP, Monks PS, Platt U, Plass-Dulmer C, Mihalopoulos N, Heard DE, Clemitshaw KC, Meixner FX, Prevot ASH, Schmitt R. Photolysis frequency measurement techniques: results of comparison within the ACCENT project. Atmos Chem Phys, 2008, 8: 5373–5391

    Article  CAS  Google Scholar 

  39. Takegawa N, Miyakawa T, Kondo Y, Jimenez JL, Zhang Q, Worsnop DR, Fukuda M. Seasonal and diurnal variations of submicron organic aerosol in Tokyo observed using the Aerodyne aerosol mass spectrometer. J Geophys Res, 2006, 111, doi: 10.1029/2005JD006515

    Google Scholar 

  40. Wiedensohler A, Cheng YF, Nowak A, Wehner B, Achtert P, Berghof M, Birmili W, Wu ZJ, Hu M, Zhu T, Takegawa N, Kita K, Kondo Y, Lou SR, Hofzumahaus A, Holland F, Wahner A, Gunthe SS, Rose D, Su H, Poeschl U. Rapid aerosol particle growth and increase of cloud condensation nucleus activity by secondary aerosol formation and condensation: a case study for regional air pollution in northeastern China. J Geophys Res, 2009, 114, doi: 10.1029/2008JD010884

    Google Scholar 

  41. Cheng YF, Berghof M, Garland RM, Wiedensohler A, Wehner B, Mueller T, Su H, Zhang YH, Achtert P, Nowak A, Poeschl U, Zhu T, Hu M, Zeng LM. Influence of soot mixing state on aerosol light absorption and single scattering albedo during air mass aging at a polluted regional site in northeastern China. J Geophys Res, 2009, 114, doi: 10.1029/2008JD010883

    Google Scholar 

  42. Slanina J, Wyers GP. Monitoring of atmospheric components by automatic denuder systems. J Anal Chem, 1994, 350: 467–473

    Article  CAS  Google Scholar 

  43. Oms MT, Jongejan PAC, Veltkamp AC, Wyers GP, Slanina J. Continuous monitoring of atmospheric HCl, HNO2, HNO3 and SO2 by wet-annular denuder air sampling with on-line chromatographic analysis. Int J Environ An Ch, 1996, 62: 207–218

    Article  CAS  Google Scholar 

  44. Hu M, Zhou FM, Shao KS, Zhang YH, Tang XY, Slanina J. Diurnal variations of aerosol chemical compostions and related gaseous pollutants in Beijing and Guangzhou. J Environ Sci Heal A, 2002, 37: 479–488

    Article  Google Scholar 

  45. Zhang G, Slanina S, Boring CB, Jongejan PAC, Dasgupta PK. Continuous wet denuder measurements of atmospheric nitric and nitrous acids during the 1999 Atlanta Supersite. Atmos Environ, 2003, 37: 1351–1364

    Article  CAS  Google Scholar 

  46. Trebs I, Meixner FX, Slanina J, Otjes R, Jongejan P, Andreae MO. Real-time measurements of ammonia, acidic trace gases and water-soluble inorganic aerosol species at a rural site in the Amazon Basin. Atmos Chem Phys, 2004, 4: 967–987

    Article  CAS  Google Scholar 

  47. Trebs I, Lara LL, Zeri LMM, Gatti LV, Artaxo P, Dlugi R, Slanina J, Andreae MO, Meixner FX. Dry and wet deposition of inorganic nitrogen compounds to a tropical pasture site (Rondonia, Brazil). Atmos Chem Phys, 2006, 6: 447–469

    Article  CAS  Google Scholar 

  48. Kleffmann J, Wiesen P. Technical note: quantification of interferences of wet chemical HONO LOPAP measurements under simulated polar conditions. Atmos Chem Phys, 2008, 8: 6813–6822

    Article  CAS  Google Scholar 

  49. Wang HP, Zhou B, Chen LM. Monitoring HONO of the atmosphere by differential optical absorption spectroscopy. J Fudan University (Natural Science), 2004, 43: 604–609

    CAS  Google Scholar 

  50. Acker K, Febo A, Trick S, Perrino C, Bruno P, Wiesen P, Möller D, Wieprecht W, Auel R, Guisto M, Geyer A, Platt U, Allegrini I. Nitrous acid in the urban area of Rome. Atmos Environ, 2006, 40: 3123–3133

    Article  CAS  Google Scholar 

  51. Acker K, Möller D. Atmospheric variation of nitrous acid at different sites in Europe. Environ Chem, 2007, 4: 242–255

    Article  CAS  Google Scholar 

  52. Yu Y, Galle B, Panday A, Hodson E, Prinn R, Wang S. Observations of high rates of NO2-HONO conversion in the nocturnal atmospheric boundary layer in Kathmandu, Nepal. Atmos Chem Phys, 2009, 9: 6401–6415

    Article  CAS  Google Scholar 

  53. Kleffmann J, Kurtenbach R, Lörzer J, Wiesen P, Kalthoff N, Vogel B, Vogel H. Measured and simulated vertical profiles of nitrous acid. Part I: field measurements. Atmos Environ, 2003, 37: 2949–2955

    Article  CAS  Google Scholar 

  54. Zhou FM, Shao KS, Hu M, Tang XY. The hourly measurement of aerosol and related gases in Guangzhou. Acta Scientiarum Naturalium Universitatis Pekinensis, 2002, 38: 185–191

    CAS  Google Scholar 

  55. Qin M, Xie PH, Liu WQ, Li A, Dou K, Fang W, Liu HG, Zhang WJ. Observation of atmospheric nitrous acid with DOAS in Beijing, China. J Environ Sci-China, 2006, 18: 69–75

    CAS  Google Scholar 

  56. Qin M, Xie PH, Su H, Gu JW, Peng FM, Li SW, Zeng LM, Liu JG, Liu WQ, Zhang YH. An observational study of the HONO-NO2 coupling at an urban site in Guangzhou City, South China. Atmos Environ, 2009, 43: 5731–5742

    Article  CAS  Google Scholar 

  57. Zhou XL, Huang G, Civerolo K, Roychowdhury U, Demerjian KL. Summertime observations of HONO, HCHO, and O3 at the summit of Whiteface Mountain, New York. J Geophys Res, 2007, 112, doi: 10.1029/2006JD007256

    Google Scholar 

  58. Su H, Cheng YF, Cheng P, Dong SF, Zeng LM, Wang XS, Slanina J, Shao M, Wiensohler A. Observation of nighttime nitrous acid (HONO) formation at a non-urban site during PRIDE-PRD2004 in China. Atmos Environ, 2008, 42: 6219–6232

    Article  CAS  Google Scholar 

  59. Febo A, Perrino C, Allegrini I. Measurement of nitrous acid in Milan, Italy, by DOAS and diffusion denuders. Atmos Environ, 1996, 30: 3599–3609

    Article  CAS  Google Scholar 

  60. Zhou XL, Civerolo K, Dai HP, Huang G, Schwab J, Demerjian K. Summertime nitrous acid chemistry in the atmospheric boundary layer at a rural site in New York State. J Geophys Res, 2002, 107, 4590, doi: 10.1029/2001JD001539

    Article  Google Scholar 

  61. Ramazan KA, Syomin D, Finlayson-Pitts BJ. The photochemical production of HONO during the heterogeneous hydrolysis of NO2. PhysChemChemPhys, 2004, 6: 3836–3843

    CAS  Google Scholar 

  62. Reisinger AR. Observations of HNO2 in the polluted winter atmosphere: possible heterogeneous production on aerosols. Atmos Environ, 2000, 34: 3856–3874

    Article  Google Scholar 

  63. Vogel B, Vogel H, Kleffmann J, Kurtenbach R. Measured and simulated vertical profiles of nitrous acid. Part II. Model simulations and indications for a photolytic source. Atmos Environ, 2003, 37: 2957–2966

    Article  CAS  Google Scholar 

  64. Carr S, Heard DE, Blitz MA. Comment on “atmospheric hydroxyl radical production from electronically excited NO2 and H2O”. Science, 2009, 324: 5925

    Article  Google Scholar 

  65. Stuhl F, Niki H. Flash photochemical study of the reaction OH + NO + M using resonance fluorescent detection of OH. J Chem Phys, 1972, 57: 3677–3679

    Article  CAS  Google Scholar 

  66. Stockwell WR, Kirchner F, Kuhn M, Seefeld S. A new mechanism for regional atmospheric chemistry modeling. J Geophys Res, 1997, 102: 25847–25879

    Article  CAS  Google Scholar 

  67. Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson Jr RF, Kerr JA, Rossi MJ, Troe J. Summary of evaluated kinetic and photochemical data for atmospheric chemistry. Not in System, 2001: 1–56

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuanHang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Su, H., Li, X. et al. Daytime HONO formation in the suburban area of the megacity Beijing, China. Sci. China Chem. 57, 1032–1042 (2014). https://doi.org/10.1007/s11426-013-5044-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-5044-0

Keywords

Navigation