Skip to main content
Log in

Conversion coatings of Mg-alloy AZ91D using trihexyl(tetradecyl) phosphonium bis(trifluoromethanesulfonyl)amide ionic liquid

  • Articles
  • Special Issue · Ionic Liquid and Green Chemistry
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

This work reveals the performance of a trihexyl(tetradecyl)phosphonium bis(trifluoromethanesulfonyl)amide ([P6,6,6,14][NTf2]) ionic liquid (IL) conversion coating upon AZ91D. Such conversion coatings represent a novel avenue for chromate replacement. An optimization of coating performance was pursued by careful alloy pretreatment to generate a surface on which the coating performs best, as the AZ91 substrate is distinctly different from pure or dilute Mg alloys. The results reveal that a functional conversion coating can be achieved, retarding anodic dissolution kinetics, causing a significant decrease in corrosion rate. The coating efficacy is closely tied to the pretreatment performed, which dictates both the microstructural and electrochemical heterogeneity of the surface. The resulting coatings were found to contain Mg x F x and phosphonium cation related components, the proportions of which were dependent on the pretreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyer JA. The Corrosion of Magnesium and of Magnesium Alloys Containing Manganese. Corporation AM. ed. American Magnesium Corporation, 1927

  2. Song G, Atrens A, St John D, Zheng L. Magnesium Alloys and Their Applications. WIley-VCH, Vol. 245, 2000

  3. Macdonald DD. Passivity—the key to our metals-based civilization. Pure Appl Chem, 1999, 71(6): 951–978

    Article  CAS  Google Scholar 

  4. Evans UR. An Introduction to Metallic Corrosion, 3rd ed. London: Edward Arnold, 1981, 302

    Google Scholar 

  5. Forsyth M, Howlett PC, Tan SK, Mac Farlane DR, Birbilis N. An ionic liquid surface treatment for corrosion protection of magnesium alloy AZ31. Electrochem Solid-State Lett, 2006, 9(11): B52–B55

    Article  CAS  Google Scholar 

  6. Lorking KF. Inhibition of corrosion of magnesium in chromic acid. Nature, 1964, 201(491): 75

    Article  CAS  Google Scholar 

  7. Hehmann F, Sommer F, Jones H, Edyvean RGJ. Corrosion inhibition in magnesium aluminum-based alloys induced by rapid solidification processing. J Mater Sci, 1989, 24(7): 2369–2379

    Article  CAS  Google Scholar 

  8. Ma Y, Nie X, Northwood DO, Hu H. Systematic study of the electrolytic plasma oxidation process on a mg alloy for corrosion protection. Thin Solid Films, 2006, 494(1–2): 296–301

    Article  CAS  Google Scholar 

  9. Chen XB, Birbilis N, Abbott TB. Review of corrosion-resistant conversion coatings for magnesium and its alloys. Corrosion, 2011, 67(3): 035005-1–035005-16

    Article  Google Scholar 

  10. Gonzaleznunez MA, Nunezlopez CA, Skeldon P, Thompson GE, Karimzadeh H, Lyon P, Wilks TE. A non-chromate conversion coating for magnesium alloys and magnesium-based metal-matrix composites. Corros Sci, 1995, 37(11): 1763–1772

    Article  CAS  Google Scholar 

  11. Anicai L, Masi R. Santamaria M, Di Quarto F. A photoelectrochemical investigation of conversion coatings on Mg substrates. Corros Sci, 2005, 47(12): 2883–2900

    Article  CAS  Google Scholar 

  12. Lin CS, Lin HC, Lin KM, Lai WC. Formation and properties of stannate conversion coatings on AZ61 magnesium alloys. Corros Sci, 2006, 48(1): 93–109

    Article  CAS  Google Scholar 

  13. Kouisni L, Azzi M, Zertoubi M, Dalard F, Maximovitch S. Phosphate coatings on magnesium alloy AM60 Part 1: Study of the formation and the growth of zinc phosphate films. Surf Coat Technol, 2004, 185(1): 58–67

    Article  CAS  Google Scholar 

  14. Umehara H, Takaya M, Terauchi S. Chrome-free surface treatments for magnesium alloy. Surf Coat Technol, 2003, 169: 666–669

    Article  Google Scholar 

  15. Chong KZ, Shih TS. Conversion-coating treatment for magnesium alloys by a permanganate-phosphate solution. Mater Chem Phys, 2003, 80(1): 191–200

    Article  CAS  Google Scholar 

  16. Hawke D, Albright DL. A phosphate-permanganate conversion coating for magnesium. Metal Finishing, 1995, 93(10): 34–38

    Article  CAS  Google Scholar 

  17. Lin CS, Lee CY, Li WC, Chen YS, Fang GN. Formation of phosphate/permanganate conversion coating on AZ31 magnesium alloy. J Electrochem Soc, 2006, 153(3): B90–B96

    Article  CAS  Google Scholar 

  18. Zhao M, Wu SS, Luo JR, Fukuda Y, Nakae H. A chromium-free conversion coating of magnesium alloy by a phosphate-permanganate solution. Surf Coat Technol, 2006, 200(18–19): 5407–5412

    Article  CAS  Google Scholar 

  19. Dabala M, Brunelli K, Napolitani E, Magrini M. Cerium-based chemical conversion coating on AZ63 magnesium alloy. Surf Coat Technol, 2003, 172(2–3): 227–232

    Article  CAS  Google Scholar 

  20. Brunelli K, Dabala M, Calliari I, Magrini M. Effect of Hcl pre-treatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys. Corros Sci, 2005, 47(4): 989–1000

    Article  CAS  Google Scholar 

  21. Lin CS, Fang SK. Formation of cerium conversion coatings on AZ31 magnesium alloys. J Electrochem Soc, 2005, 152(2): B54–B59

    Article  CAS  Google Scholar 

  22. Rudd AL, Breslin CB, Mansfeld F. The corrosion protection afforded by rare earth conversion coatings applied to magnesium. Corros Sci, 2000, 42(2): 275–288

    Article  CAS  Google Scholar 

  23. Zein El Abedin S, Endres F. Electrodeposition of metals and semiconductors in air- and water-stable ionic liquids. ChemPhysChem, 2006, 7(1): 58–61

    Article  CAS  Google Scholar 

  24. Bermudez MD, Jimanez AE, Martinez-Nicolls G. Study of surface interactions of ionic liquids with aluminium alloys in corrosion and erosion-corrosion processes. Appl Surf Sci, 2007, 253(17): 7295–7302

    Article  CAS  Google Scholar 

  25. Caporali S, Ghezzi F, Giorgetti A, Lavacchi A, Tolstogouzov A, Bardi U. Interaction between an imidazolium based ionic liquid and the az91d magnesium alloy. Adv Eng Mater, 2007, 9(3): 185–190

    Article  CAS  Google Scholar 

  26. Welton T. Room-temperature ionic liquids. solvents for synthesis and catalysis. Chem Rev, 1999, 99(8): 2071–2083

    CAS  Google Scholar 

  27. MacFarlane DR, Forsyth M, Howlett PC, Pringle JM, Sun J, Annat G, Neil W, Izgorodina EI. Ionic liquids in electrochemical devices and processes: Managing interfacial electrochemistry. Acc Chem Res, 2007, 40(11): 1165–1173

    Article  CAS  Google Scholar 

  28. Yang H, Guo X, Wu G, Ding W, Birbilis N. Electrodeposition of chemically and mechanically protective Al-coatings on AZ91DMg alloy. Corros Sci, 2011, 53(1): 381–387

    Article  CAS  Google Scholar 

  29. Birbilis N, Howlett PC, MacFarlane DR, Forsyth M. Exploring corrosion protection of Mg via ionic liquid pretreatment. Surf Coat Technol, 2007, 201(8): 4496–4504

    Article  CAS  Google Scholar 

  30. Howlett PC, Zhang S, MacFarlane DR, Forsyth M. An investigation of a phosphinate-based ionic liquid for corrosion protection of magnesium alloy AZ31. Aust J Chem, 2007, 60(1): 43–46

    Article  CAS  Google Scholar 

  31. Efthimiadis J, Neil WC, Bunter A, Howlett PC, Hinton BRW, MacFarlane DR, Forsyth M. Potentiostatic control of ionic liquid surface film formation on ZE41 magnesium alloy. ACS App Mater Int, 2010, 2(5): 1317–1323

    Article  CAS  Google Scholar 

  32. Howlett PC, Khoo T, Mooketsi G, Efthimiadis J, MacFarlane DR, Forsyth M. The effect of potential bias on the formation of ionic liquid generated surface films on Mg alloys. Electrochim Acta, 2010, 55(7): 2377–2383

    Article  CAS  Google Scholar 

  33. Cowie BCC, Tadich A, Thomsen L. The current performance of the wide range (90–2500 eV) soft X-ray beamline at the australian synchrotron. AIP Conference Proceedings, 2010, 1234(1): 307–310

    Article  Google Scholar 

  34. Südholz AD, Kirkland NT, Buchheit RG, Birbilis N. Electrochemical properties of intermetallic phases and common impurity elements in magnesium alloys. Electrochem Solid-State Lett, 2011, 14(2): C5–C7

    Article  Google Scholar 

  35. Wang H, Shi H, Hong T, Kang C, Jepson WP. Characterization of Inhibitor and Corrosion Product Film Using Electrochemical Impedance Spectroscopy (EIS). in NACE International Corrosion Conference and Expo, 2001, NACE: Houston, TX, USA

    Google Scholar 

  36. Howlett PC, Efthimiadis J, Hale P, Van Riessen GA, MacFarlane DR, Forsyth M. Characterization of the magnesium alloy AZ31 surface in the ionic liquid trihexyl(tetradecyl)phosphonium bis(trifluoromethanesulfonyl) amide. J Electrochem Soc, 2010, 157(11): C392–C398

    Article  CAS  Google Scholar 

  37. Moulder JF, Chastain J, Stickle WF, Sobol PE, Bomben KD. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Physical Electronics, 1995

  38. Howlett PC, Brack N, Hollenkamp AF, Forsyth M, MacFarlane DR. Characterization of the lithium surface in N-methyl-N-alkylpyrrolidinium bis(trifluoromethanesulfonyl) amide room-temperature ionic liquid electrolytes. J Electrochem Soc, 2006, 153(3): A595–A606

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Forsyth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howlett, P.C., Gramet, S., Lin, J. et al. Conversion coatings of Mg-alloy AZ91D using trihexyl(tetradecyl) phosphonium bis(trifluoromethanesulfonyl)amide ionic liquid. Sci. China Chem. 55, 1598–1607 (2012). https://doi.org/10.1007/s11426-012-4677-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4677-8

Keywords

Navigation