Skip to main content
Log in

Photochemical hydrogen production with molecular devices comprising a zinc porphyrin and a cobaloxime catalyst

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Two new noble-metal-free molecular devices, [{Co(dmgH)2Cl}{Zn(PyTPP)}] (1, dmgH = dimethyloxime, PyTPP = 5-(4-pyridyl)-10,15,20-triphenylporphyrin) and [{Co(dmgH)2Cl}{Zn(apPyTPP)}] (2, apPyTPP = 5-[4-(isonicotinamidyl)phenyl]-10,15,20-triphenylporphyrin), for light-driven hydrogen generation were prepared and spectroscopically characterized. The zinc porphyrin photosensitizer and the CoIII-based catalyst unit are linked by axial coordination of a pyridyl group in the periphery of zinc-porphyrin to the cobalt centre of catalyst with different lengths of bridges. The apparent fluorescence quenching and lifetime decays of 1 and 2 were observed in comparison with their reference chromophores, Zn(PyTPP) (3) and Zn(apPyTPP) (4), suggesting a possibility for an intramolecular electron transfer from the singlet excited state of zinc porphyrin unit to the cobalt centre in the molecular devices. Photochemical H2-evolving studies show that complexes 1 and 2 are efficient molecular photocatalysts for visible light-driven H2 generation from water with triethylamine as a sacrificial electron donor in THF/H2O, with turnover numbers up to 46 and 35 for 1 and 2, respectively. In contrast to these molecular devices, the multicomponent catalyst of zinc porphyrin and [Co(dmgH)2PyCl] did not show any fluorescence quenching and as a consequence, no H2 gas was detected by GC analysis in the presence of triethylamine with irradiation of visible light. The plausible mechanism for the photochemical H2 generation with these molecular devices is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Graetzel M. Artificial photosynthesis: Water cleavage into hydrogen and oxygen by visible light. Acc Chem Res, 1981, 14: 376–384

    Article  CAS  Google Scholar 

  2. Service RF. Is it time to shoot for the sun? Science, 2005, 309: 548–551

    Article  CAS  Google Scholar 

  3. Armaroli N, Balzani V. The future of energy supply: Challenges and opportunities. Angew Chem Int Ed, 2007, 46: 52–66

    Article  CAS  Google Scholar 

  4. Abe R. Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photochem Photobio C, 2010, 4: 179–209

    Article  Google Scholar 

  5. Esswein J, Nocera DG. Hydrogen production by molecular photocatalysis. Chem Rev, 2007, 107: 4022–4047

    Article  CAS  Google Scholar 

  6. Bard AJ, Fox MA. Artificial photosynthesis:solar splitting of water to hydrogen and oxygen. Acc Chem Res, 1995, 28: 141–145

    Article  CAS  Google Scholar 

  7. Losse S, Vos JG, Rau S. Catalytic hydrogen production at cobalt centres. Coord Chem Rev, 2010, 254: 2492–2504

    Article  CAS  Google Scholar 

  8. Wang M, Na Y, Gorlov M, Sun L. Light-driven hydrogen production catalysed by transition metal complexes in homogeneous systems. Dalton Trans, 2009, 6458–6467

  9. Ozawa H, Haga M, Sakai K. A photo-hydrogen-evolving molecular device driving visible-light-induced EDTA-reduction of water into molecular hydrogen. J Am Chem Soc, 2006, 128: 4926–4927

    Article  CAS  Google Scholar 

  10. Rau S, Schaefer B, Gleich D, Anders E, Rudolph M, Friedrich M, Goerls H, Henry W, Vos JG. A supramolecular photocatalyst for the production of hydrogen and the selective hydrogenation of tolane. Angew Chem Int Ed, 2006, 45: 6215–6217

    Article  CAS  Google Scholar 

  11. Wang WG, Wang F, Wang HY, Si G, Tung CH, Wu LZ. Photocatalytic hydrogen evolution by [FeFe] mimics in homogeneous solution. Chem Asian J, 2010, 5: 1796–1803

    Article  CAS  Google Scholar 

  12. Elvington M, Brown J, Arachchige SM, Brewer KJ. Photocatalytic hydrogen production from water employing a Ru, Rh, Ru molecular device for photoinitiated electron collection. J Am Chem Soc, 2008, 129: 10644–10645

    Article  Google Scholar 

  13. Fihri A, Artero V, Razavet M, Baffert C, Leibl W, Fontecave M. Cobaloxime-based photocatalytic devices for hydrogen production. Angew Chem Int Ed, 2008, 47: 564–567

    Article  CAS  Google Scholar 

  14. Fihri A, Artero V, Pereira A, Fontecave M. Efficient H2-producing photocatalytic systems based on cyclometalated iridium and tricarbonylrhenium-dimine photosensitizers and cobaloxime catalysts. Dalton Trans, 2008, 5567–5569

  15. Arachchige S, Brown J, Brewer K. Photochemical hydrogen production from water using the new photocatalyst[{(bpy)2Ru (dpp)}2RhBr2](PF6)5. J Photochem Photobio A, 2008, 197: 13–17

    Article  CAS  Google Scholar 

  16. Sakai K, Ozawa H. Homogeneous catalysis of platinum (II) complexes in photochemical hydrogen production from water. Coord Chem Rev, 2007, 251: 2753–2766

    Article  CAS  Google Scholar 

  17. Sun L, Åkermark B, Ott S. Iron hydrogenase active site mimics in supramolecular systems aiming for light driven hydrogen production. Coord Chem Rev, 2005, 249: 1653–1663

    Article  CAS  Google Scholar 

  18. Li X, Wang M, Zhang S, Pan J, Na Y, Liu J, Åkermark B, Sun L. Noncovalent assembly of a metalloporphyrin and an iron hydrogenase active-site model: Photo-induced electron transfer and hydrogen generation. J Phys Chem B, 2008, 112: 8198–8202

    Article  CAS  Google Scholar 

  19. Kluwer AM, Kapre R, Hartl F, Lutz M, Spek AL, Brouwer AM, van Leeuwen PWNM, Reek JNH. Self-assembled biomimetic [2Fe2S]-hydrogenase-based photocatalyst for molecular hydrogen evolution. Proc Natl Acad Sci, 2009, 106: 10460–10465

    CAS  Google Scholar 

  20. Song LC, Wang LX, Tang MY, Li CG, Song HB, Hu QM. Synthesis, structure, and photoinduced catalysis of [FeFe]-hydrogenase active site models covalently linked to a porphyrin or metalloporphyrin moiety. Organometallics, 2009, 28: 3834–3841

    Article  CAS  Google Scholar 

  21. Zhang P, Wang M, Li C, Li X, Dong J, Sun L. Photochemical H2 production with noble-metal-free molecular devices comprising a porphyrin photosensitizer and a cobaloxime catalyst. Chem Comm, 2010, 46: 8806–8808.

    Article  CAS  Google Scholar 

  22. Trogler W, Stewart R, Epps L, Marzilli L. Cis and trans effects on the proton magnetic resonance spectra of cobaloximes. Inorg Chem, 1974, 13: 1564–1570.

    Article  CAS  Google Scholar 

  23. Schrauzer GN. Bis(dimethylglyoximato) cobalt complexes (“cobaloximes”). Inorg Synth, 1968, 11: 61–70

    Article  CAS  Google Scholar 

  24. Fleischer EB, Shachter AM. Coordination oligomers and a coordination polymer of zinc tertraarylporphyrins. Inorg Chem, 1991, 30: 3763–3769

    Article  CAS  Google Scholar 

  25. Aspley CJ, Smith JRL, Perutz RN, Pursche D. Synthesis and photochemistry of free base and zinc tetraaryl porphyrins mono-substituted with tungsten pentacarbonyl via a pyridine linker. Dalton Trans, 2002, 170–180

  26. Leland BA, Joran AD, Felker PM, Hopfield JJ, Zewail AH, Dervan PB. Picosecond fluorescene studies on intramolecular photochemical electron transfer in porphyrins linked to quinones at two different fixed distances. J Phys Chem, 1985, 89: 5571–5573

    Article  CAS  Google Scholar 

  27. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Graetzel M. Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X=Cl, Br, I, CN, and SCN-) on nanocrystaline titanium dioxide electrodes. J Am Chem Soc, 1993, 115: 6382–6390

    Article  CAS  Google Scholar 

  28. Kavarnos GJ, Turro NJ. Photosensitization by reversible electron transfer: Theories, experimental evidence and examples. Chem Rev, 1986, 86: 401–449

    Article  CAS  Google Scholar 

  29. Joran AD, Leland BA, Felker PM, Zewail AH, Hopfield JJ, Dervan PB. Effect of exothermicity on electron transfer rates in photosynthetic molecular models. Nature, 1987, 327: 508–511

    Article  CAS  Google Scholar 

  30. Joran AD, Leland BA, Geller GG, Hopfield JJ, Dervan PB. Models for photochemical electron transfer at fixed distances. Porphyrin-bicyclo[2,2,2]octane-quinone and porphyrin-bisbicyclo[2,2,2] octane-quinone. J Am Chem Soc, 1984, 106: 6090–6092

    Article  CAS  Google Scholar 

  31. Gabrielsson A, Smith JRL, Perutz RN. Remote site photosubstitution in metallpporphyrin-rhenium tricarbonylbipyridine assemblies: photo-reactions of molecules with very short lived excited states. Dalton Trans, 2008, 4259–4269

  32. Razavet M, Artero V, Fontecave M. Proton electroreduction catalyzed by cobaloximes: functional models for hydrogenases. Inorg Chem, 2005, 44: 4786–4795

    Article  CAS  Google Scholar 

  33. Du P, Schneider J, Luo G, Brennessel W, Eisenberg R. Visible light-driven hydrogen production from aqueous protons catalyzed by molecular cobaloxime catalysts. Inorg Chem, 2009, 48: 4952–4962

    Article  CAS  Google Scholar 

  34. Dempsey JL, Brunschwig BS, Winkler JR, Gray HB. Hydrogen evolution catalyzed by cobaloximes. Acc Chem Res, 2009, 42: 1995–2004

    Article  CAS  Google Scholar 

  35. Dempsey JL, Winkler JR, Gray HB. Kinetics of electron transfer reactions of H2-evolving cobalt diglyoxime catalysts. J Am Chem Soc, 2010, 132: 1060–1065

    Article  CAS  Google Scholar 

  36. Hawecher J, Lehn JM, Ziessel R. Efficient homogeneous photochemical hydrogen genetation and water reduction mediated by cobaloxime or macrocyclic cobalt complexes. Nouv J Chim, 1983, 7: 271–277

    Google Scholar 

  37. DeLaive PJ, Foreman TK, Giannotti C, Whitten DG. Photoinduced electron transfer reactions of transition-metal complexes with amines. Mechanistic studies of alternate pathways to back electron transfer. J Am Chem SOC, 1980, 102: 5627–5631

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei Wang or LiCheng Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, P., Wang, M., Li, X. et al. Photochemical hydrogen production with molecular devices comprising a zinc porphyrin and a cobaloxime catalyst. Sci. China Chem. 55, 1274–1282 (2012). https://doi.org/10.1007/s11426-012-4514-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4514-0

Keywords

Navigation