Skip to main content
Log in

Cell-SELEX-based aptamer-conjugated nanomaterials for enhanced targeting of cancer cells

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Early detection and treatment of cancer depends on developing highly sensitive and specific methods for targeting cancer cells. To do this, aptamers, which are generated by a novel technique called cell-SELEX (systematic evolution of ligands by exponential enrichment), have been widely applied in cancer cell targeting based on such merits as high target affinity and specificity, small size, minimal immunogenicity, and ease of chemical modification. Furthermore, aptamers can gain more flexibility as cancer cell targeting tools when conjugated to nanomaterials, including metallic nanoparticles, quantum dots, silica nanoparticles, and carbon nanomaterials, among others. In this review, we discuss the use of cell-SELEX-based aptamer-nanomaterials conjugates as novel molecular tools for enhanced targeting of cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jemal, A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, Feuer EJ, Thun MJ. CA Cancer J Clin, 2005, 55(1): 10–30

    Article  Google Scholar 

  2. Liu J, Cao Z, Lu Y. Functional nucleic acid sensors. Chem Rev, 2009, 109(5): 1948–1998

    Article  CAS  Google Scholar 

  3. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968): 505–510

    Article  CAS  Google Scholar 

  4. Ellington AD, Szostak JW. In vitro selection of RNA that bind specific ligands. Nature, 1990, 346: 818–822

    Article  CAS  Google Scholar 

  5. Osborne SE, Matsumura I, Ellington AD. Aptamers as therapeutic and diagnostic reagents: problems and prospects. Curr Opin Chem Biol, 1997, 1(1): 5–9

    Article  CAS  Google Scholar 

  6. Famulok M, Hartig JS, Mayer G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev, 2007, 107(9): 3715–3743

    Article  CAS  Google Scholar 

  7. Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold L. A tenascin-C aptamer identified by tumor CELL SELEX: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci USA, 2003, 100(26): 15416–15421

    Article  CAS  Google Scholar 

  8. Shamah SM, Healy JM, Cload ST. Complex target SELEX. Acc Chem Res, 2008, 41(1): 130–138.

    Article  CAS  Google Scholar 

  9. Shangguan D, Li Y, Tang Z, Cao Z, Chen H, Mallikaratchy P, Sefah K, Yang C, Tan W. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci USA, 2006, 103(32): 11838–11843

    Article  CAS  Google Scholar 

  10. Berezovski MV, Lechmann M, Musheev MU, Mak TW, Krylov SN. Aptamer-facilitated biomarker discovery (AptaBiD). J Am Chem Soc, 2008, 130(28): 9137–9143

    Article  CAS  Google Scholar 

  11. Fang X, Tan W. Aptamers generated from Cell-SELEX for molecular medicine: A chemical biology approach. Acc Che Res, 2010, 43(1): 48–57

    Article  CAS  Google Scholar 

  12. Wang Z, Lu Y. Functional DNA directed assembly of nanomaterials for biosensing. J Mater Chem, 2009, 19: 1788–1798

    Article  CAS  Google Scholar 

  13. Chen T, Shukoor MI, Chen Y, Yuan Q, Zhu Z, Zhao Z, Gulbakan B, Tan W. Aptamer-conjugated nanomaterials for bioanalysis and biotechnology applications. Nanoscale, 2011, 3: 546–556

    Article  CAS  Google Scholar 

  14. Wang J. Nanomaterial-based amplified transduction of biomolecular interactions. Small, 2005, 1(11): 1036–1043

    Article  CAS  Google Scholar 

  15. Kim Y, Cao Z, Tan W. Molecular assembly for high-performance bivalent nucleic acid inhibitor. Proc Natl Acad Sci USA, 2008, 105(15): 5664–5669

    Article  CAS  Google Scholar 

  16. Wu Y, Phillips JA, Liu H, Yang R, Tan W. Carbon nanotubes protect DNA strands during cellular delivery. ACS Nano, 2008, 2(10): 2023–2028

    Article  CAS  Google Scholar 

  17. Ireson CR, Kelland LR. Discovery and development of anticancer aptamers. Mol Cancer Ther, 2006, 5: 2957–2962

    Article  CAS  Google Scholar 

  18. Lupold SE, Hicke BJ, Lin Y, Coffey DS. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res, 2002, 62: 4029–4033

    CAS  Google Scholar 

  19. Pu Y, Zhu Z, Liu H, Zhang J, Liu J, Tan W. Using aptamers to visualize and capture cancer cells. Anal Bioanal Chem, 2010, 397(8): 3225–3233

    Article  CAS  Google Scholar 

  20. Tang Z, Shangguan D, Wang K, Shi H, Sefah K, Mallikratchy P, Chen HW, Li Y, Tan W. selection of aptamers for molecular recognition and characterization of cancer cells. Anal Chem, 2007, 79(13): 4900–4907

    Article  CAS  Google Scholar 

  21. Chen HW, Medley CD, Sefah K, Shangguan D, Tang Z, Meng L, Smith JE, Tan W. Molecular recognition of small-cell lung cancer cells using aptamers. ChemMedChem, 2008, 3: 991–1001

    Article  CAS  Google Scholar 

  22. Sefah K, Tang Z, Shangguan D, Chen H W, Lopez-Colon D, Li Y, Parekh P, Martin J, Meng L, Phillips JA, Kim YM, Tan W. Molecular recognition of acute myeloid leukemia using aptamersMolecular recognition of AML. Leukemia, 2009, 23: 235–244

    Article  CAS  Google Scholar 

  23. Ghosh SK, Pal T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev, 2007, 107(11): 4797–4862

    Article  CAS  Google Scholar 

  24. Medley CD, Smith JE, Tang ZW, Wu YR, Bamrungsap S, Tan WH. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal Chem, 2008, 80(11): 1067–1072

    Article  CAS  Google Scholar 

  25. Huang YF, Lin YW, Lin ZH, Chang HT. Aptamer-modified gold nanoparticles for targeting breast cancer cells through light scattering. J Nanopart Res, 2009, 11: 775–783

    Article  CAS  Google Scholar 

  26. Liu G, Mao X, Phillips JA, Xu H, Tan W, Zeng L. Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells. Anal Chem, 2009, 81(24): 10013–10018

    Article  CAS  Google Scholar 

  27. Lu W, ArumugamS R, Senapati D, Singh AK, Arbneshi T, Khan SA, Yu H, Ray PC. Multifunctional oval-shaped gold-nanoparticle-based selective detection of breast cancer cells using simple colorimetric and highly sensitive two-photon scattering assay. ACS Nano, 2010, 4(3): 1739–1749

    Article  CAS  Google Scholar 

  28. Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res, 2008, 41(12): 1578–1586

    Article  CAS  Google Scholar 

  29. Cheon J, Lee JH. Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc Chem Res, 2008, 41(12): 1630–1640

    Article  CAS  Google Scholar 

  30. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnol, 2007, 2: 751–760

    Article  CAS  Google Scholar 

  31. Sarkar B, Dosch J, Simeone DM. Cancer stem cells: A new theory regarding a timeless disease. Chem Rev, 2009, 109(7): 3200–3208

    Article  CAS  Google Scholar 

  32. Lorenzo LR, Javier F, Abajo G, Liz-Marzn LM. Surface enhanced raman scattering using star-shaped gold colloidal nanoparticles. J Phys Chem C, 2010, 114(16): 7336–7340

    Article  Google Scholar 

  33. Khoury CG, Vo-Dinh T. Gold nanostars for surface-enhanced raman scattering: synthesis, characterization and optimization. J Phys Chem C, 2008, 112(48): 18849–18859

    CAS  Google Scholar 

  34. Lu W, Singh AK, Khan SA, Senapati D, Yu H, Ray PC. Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced raman spectroscopy. J Am Chem Soc, 2010, 132(51): 18103–18114

    Article  CAS  Google Scholar 

  35. Huang YF, Chang HT, Tan WH. Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal Chem, 2008, 80(3): 567–572

    Article  CAS  Google Scholar 

  36. Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res, 2008, 41(12): 1578–1586

    Article  CAS  Google Scholar 

  37. Huang YF, Sefah K, Bamrungsap S, Chang HT, Tan WH. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods. Langmuir, 2008, 24(20): 11860–11865

    Article  CAS  Google Scholar 

  38. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005, 307(5709): 538–544

    Article  CAS  Google Scholar 

  39. Zhang J, Jia X, Lv XJ, Deng YL, Xie HY. Fluorescent quantum dot-labeled aptamer bioprobes specifically targeting mouse liver cancer cells. Talanta, 2010, 81(1–2): 505–509

    Article  CAS  Google Scholar 

  40. Li Z, Huang P, He R, Lin J, Yang S, Zhang X, Ren Q, Cui D. Aptamer-conjugated dendrimer-modified quantum dots for cancer cell targeting and imaging. Mater Lett, 2010, 64(3): 375–378

    Article  CAS  Google Scholar 

  41. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett, 2007, 7(10): 3065–3070

    Article  CAS  Google Scholar 

  42. Savla R, Taratula O, Garbuzenko O, Minko T. Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J Control Release, 2011, doi:10.1016/j.jconrel. 2011.02.01

  43. Ko MH, Kim S, Kang WJ, Lee JH, Kang H, Moon SH, Hwang DW, Ko HY, Lee DS. In vitro derby imaging of cancer biomarkers using quantum dots. Small, 2009, 5(10): 1207–1212

    CAS  Google Scholar 

  44. Kang WJ, Chae JR, Cho YL, Lee JD, Kim S. Multiplex imaging of single tumor cells using quantum-dot-conjugated aptamers. Small, 2009, 5(22): 2519–2522

    Article  CAS  Google Scholar 

  45. Jie G, Wang L, Yuan J, Zhang S. Versatile electrochemiluminescence assays for cancer cells based on dendrimer/Cdse-Zns-quantum dot nanoclusters. Anal Chem, 2011, 83(10): 3873–3880

    Article  CAS  Google Scholar 

  46. Joshua E. Smith, Lin Wang, Tan W. Bioconjugated silica-coated nanoparticles for bioseparation and bioanalysis. Trends Anal Chem, 2006, 25(9): 848–855

    Article  CAS  Google Scholar 

  47. Yan J, Estévez MC, Smith JE, Wang K, He X, Wang L, Tan W. Dye-doped nanoparticles for bioanalysis. Nano Today, 2007, 2(3): 44–50

    Article  Google Scholar 

  48. Zhao XJ, Hilliard LR, Mechery SJ, Wang YP, Bagwe RP, Jin SG, Tan WH. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Natl Acad Sci USA, 2004, 101(42): 15027–15032

    Article  CAS  Google Scholar 

  49. Deng T, Li J, Zhang LL, Jiang JH, Chen JN, Shen GL, Yu RQ. A sensitive fluorescence anisotropy method for the direct detection of cancer cells in whole blood based on aptamer-conjugated near-infrared fluorescent nanoparticles. Biosens Bioelectron, 2010, 25(7): 1587–1591

    Article  CAS  Google Scholar 

  50. Herr JK, Smith JE, Medley CD, Shangguan D, Tan W. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal Chem, 2006, 78(9): 2918–2924

    Article  CAS  Google Scholar 

  51. Smith JE, Medley CD, Tang Z, Shangguan D, Lofton C, Tan W. Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal Chem, 2007, 79(8): 3075–3082

    Article  CAS  Google Scholar 

  52. Medley CD, Bamrungsap S, Tan W, Smith JE. Aptamer-conjugated nanoparticles for cancer cell detection. Anal Chem, 2011, 83(3): 727–734

    Article  CAS  Google Scholar 

  53. Estévez MC, O’Donoghue MB, Chen X, Tan W. Highly fluorescent dye-doped silica nanoparticles increase flow cytometry sensitivity for cancer cell monitoring. Nano Res, 2009, 2(6): 448–461

    Article  Google Scholar 

  54. Chen X, Estévez MC, Zhu Z, Huang YF, Chen Y, Wang L, Tan W. Using aptamer-conjugated fluorescence resonance energy transfer nanoparticles for multiplexed cancer cell monitoring. Anal Chem, 2009, 81(16): 7009–7014

    Article  CAS  Google Scholar 

  55. Jun YW, Seo JW, Cheon J. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res, 2008, 41(2): 179–189

    Article  CAS  Google Scholar 

  56. Wang L, Zhao W, Tan W. Bioconjugated silica nanoparticles: Development and applications. Nano Res, 2008, 1(2): 99–115

    Article  CAS  Google Scholar 

  57. Hwang DW, Ko HY, Lee JH, Kang H, Ryu SH, Song IC, Lee DS, Kim S. A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J Nucl Med, 2010, 51(1): 98–105

    Article  CAS  Google Scholar 

  58. Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG. DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater, 2003, 2: 338–342

    Article  CAS  Google Scholar 

  59. Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, Diner BA, Dresselhaus MS, McLean RS, Onoa GB, Samsonidze GG, Semke ED, Usrey M, Walls DJ. Structure-based carbon nanotube sorting by sequence-dependent dna assembly. Science, 2003, 302(5650): 1545–1548

    Article  CAS  Google Scholar 

  60. Nguyen CV, Delzeit L, Cassell AM, Li J, Han J, Meyyappan M. Preparation of nucleic acid functionalized carbon nanotube arrays. Nano Lett, 2002, 2(10): 1079–1081

    Article  CAS  Google Scholar 

  61. Hazani M, Naaman R, Hennrich F, Kappes MM. Confocal fluorescence imaging of DNA-functionalized carbon nanotubes. Nano Lett, 2003, 3(2): 153–155

    Article  CAS  Google Scholar 

  62. Taghdisi SM, Lavaee P, Ramezani M, Abnous K. Reversible Targeting and controlled release delivery of daunorubicin to cancer cells by aptamer-wrapped carbon nanotubes. Eur J Pharm Biopharm, 2011, 77(2): 200–206

    Article  CAS  Google Scholar 

  63. Feng L, Chen Y, Ren J, Qu X. A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials, 2011, 32(11): 2930–2937

    Article  CAS  Google Scholar 

  64. Cao Z, Tong R, Mishra A, Xu W, Wong GCL, Cheng J, Lu Y. Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew Chem Int Ed, 2009, 48(35): 6494–6498

    Article  CAS  Google Scholar 

  65. Kang H, O’Donoghue MB, Liu H, Tan W. A liposome-based nanostructure for aptamer directed delivery. Chem Commun, 2010, 46(2): 249–251

    Article  CAS  Google Scholar 

  66. Wu Y, Sefah K, Liu H, Wang R, Tan W. DNA aptamer-micelle as an efficient detection/delivery vehicle toward cancer cells. Proc Natl Acad Sci USA, 2010, 107(1): 5–10

    Article  CAS  Google Scholar 

  67. Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA, 2006, 103(16): 6315–6320

    Article  CAS  Google Scholar 

  68. Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci USA, 2008, 105(45): 17356–17361

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XiaoBing Zhang or WeiHong Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, R., Chen, Z., Ye, M. et al. Cell-SELEX-based aptamer-conjugated nanomaterials for enhanced targeting of cancer cells. Sci. China Chem. 54, 1218–1226 (2011). https://doi.org/10.1007/s11426-011-4336-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4336-5

Keywords

Navigation